k-nearest-neighbor算法
1. kNN
1.1 基本的kNN模型
kNN(k-nearest neighbor)的思想简单来说就是,要评价一个未知的东西U,只需找k个与U相似的已知的东西,并通过k个已知的,对U进行评价。假如要预测风炎君对一部电影M的评分,根据kNN的思想,我们可以先找出k个与风炎君相似的,并且对M进行过评分的用户,然后再用这k个用户的评分预测风炎君对M的评分。又或者先找出k个与M相似的,并且风炎君评价过的电影,然后再用这k部电影的评分预测风炎君对M的评分。在这个例子中,找相似用户的方法叫做user-based kNN,找相似物品的方法叫做item-based kNN。这两种方法的思想和实现都大同小异,因此下文只讨论item-based kNN,并且将其简称为kNN。
根据kNN的思想,我们可以将kNN分为以下三个步骤(假设预测用户u对物品i的评分):
(1)计算相似度
推荐系统中常用的相似度有:Pearson correlation,Cosine,Squared Distance,其中Pearson correlation的运用最为普遍,因此本文只介绍Pearson correlation。
Pearson correlation的取值范围为[-1,1],当值为-1时,表示两组变量负相关,为0时则表示两组变量不相关,为1时表示两组变量正相关,其计算公式如下:

(2)选择邻居
在用户u评过分的所有电影中,找出k个与电影m相似度最高的电影,并用N(u, m)表示这k个电影的集合。
(3)计算预测值
有了k个相似的电影后,就可以用以下公式预测评分:

1.2 数据稀疏性与kNN的改进
现在待处理的推荐系统规模越来越大,用户和商品数目动辄百千万计,两个用户之间选择的重叠非常少。如果用用户和商品之间已有的选择关系占所有可能存在的选择关系的比例来衡量系统的稀疏性,那么平时研究最多的MovieLens数据集的稀疏度是4.5%,Netflix是1.2%,Bibsonomy是0.35%,Delicious是0.046%。
从Pearson correlation的计算公式上看,如果某两个电影的交集大小比其它电影的交集要小得多,那么这两个电影的相似度的可靠性就比较低。由上面描述的数据稀疏性可知,在推荐系统中出现某些交集的较小的情况将会十分平常。而这会大大加强相似度的不可靠性。为了预测结果的可靠性,有必要减轻这种不可靠性,因此我们要根据交集的大小对相似度进行一次压缩(shrinkage):

1.3 全局作用与kNN的改进
用户对电影评分有各种趋势,例如:有的用户是严格的评分者,因而倾向于给较低的分数;有的用户是宽松的评分者,因而倾向于给较高的分数;有的电影的表现即使一般也倾向于获得较高的分数。在推荐系统中,将这些趋势称为全局作用(global effect,简称GE)。
常用的GE有16种,这里只列出本文用到的3种:
|
No. |
Global Effect |
Meaning |
|
0 |
Overall mean |
全部评分的平均值 |
|
1 |
Movie × 1 |
电影的被评分倾向 |
|
2 |
User × 1 |
用户的评分倾向 |
|
3 |
User × Time(user)1/2 |
用户第一次评分后到现在相距了多少时间 |
表格的第一列表示各个 GE 被考虑的顺序;第二列表示 GE 的名称;第三列表示GE的意义。其中第二列命名的意义为:在“×”之前的部分代表该 GE 是基于用户或基于电影的,在“×”之后的部分代表 xu,m(下文会提到)的取值形式。
GE的目标是为该GE估计一个特定的参数(第0号GE除外,因为全部评分的平均值能直接计算得到)。在估计参数时,一次只考虑一个GE,并且使用前面已得到的所有GE的预测残差(residual)作为本次估计的真实评分。估计第t+1个GE时的真实评分由以下公式得到:

在估计GE的特定参数时,也一样要考虑到前面提到的数据稀疏性问题,即该参数也要进行压缩,进行压缩后的参数估计公式如下:

其中表示这是第t个参数,并且是基于用户的,表示用户u评过分的所有电影的集合,表示第u个用户和第m部电影相关的解释变量(explanatory variable),且在计算第1,2号GE时为1,在计算第3号GE时为

kNN基本模型并没有将GE考虑在内,为了使预测结果更加精确,有必要将GE加到kNN的预测公式中,改进后的预测公式如下:

2. 实验
实验数据使用MovieLens 100k的数据。这份数据由1000个用户对1700部电影的100000个评分组成,其稀疏性为5.88%。评价指标使用RMSE(root mean squared error):

各算法在该数据集的表现如下所示,其中表中的数值指RMSE。
|
k=10 |
k=15 |
k=20 |
|
|
基本kNN模型 |
1.076 |
1.071 |
1.068 |
|
压缩相似度的kNN |
1.011 |
1.016 |
1.020 |
|
带GE的kNN |
0.987 |
0.988 |
0.989 |
|
压缩相似度并且带GE的kNN |
0.946 |
0.951 |
0.955 |
从上表可知,当k=10时,压缩相似度的改进效果为6%,GE的改进效果为8.2%,两者叠加的改进效果为12.1%。这说明:(1)数据的稀疏性对越粗糙的模型,影响越大。(2)GE的影响较大,原因是kNN的预测结果是相似度与用户评分的加权平均值。当用户评分包含与相似度无关的因素(即GE)越多时,最终结果越不可靠。
代码由于较多就不直接贴上,想要的可以在从以下地址下载(Python实现)
http://ishare.iask.sina.com.cn/f/34170290.html
3. 参考
[1] Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights
[2] Netflix Prize 中的协同过滤算法
[3] 个性化推荐技术中的协同过滤算法研究
[4] 大数据应用之个性化推荐的十大挑战
k-nearest-neighbor算法的更多相关文章
- K Nearest Neighbor 算法
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- K nearest neighbor cs229
vectorized code 带来的好处. import numpy as np from sklearn.datasets import fetch_mldata import time impo ...
- K-Means和K Nearest Neighbor
来自酷壳: http://coolshell.cn/articles/7779.html http://coolshell.cn/articles/8052.html
- [机器学习系列] k-近邻算法(K–nearest neighbors)
C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...
- 【cs231n】图像分类-Nearest Neighbor Classifier(最近邻分类器)【python3实现】
[学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8735908.html 图像分类: 一张图像的表示:长度.宽度.通道(3个颜色通道 ...
- 机器学习-K近邻(KNN)算法详解
一.KNN算法描述 KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...
- K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...
- Nearest neighbor graph | 近邻图
最近在开发一套自己的单细胞分析方法,所以copy paste事业有所停顿. 实例: R eNetIt v0.1-1 data(ralu.site) # Saturated spatial graph ...
- K邻近分类算法
# -*- coding: utf-8 -*- """ Created on Thu Jun 28 17:16:19 2018 @author: zhen "& ...
随机推荐
- android 开发之 百度地图的使用
好久没写博客了,最近遇到个新需求 需要用到百度地图的基础地图,定位,理论上应该还会用到鹰眼的功能吧.具体还很难说.我现在 刚动工,就从头开始记录吧. 首先是先申请一个百度地图api的key 流程官网很 ...
- nginx启动、重启、关闭
一.启动 cd usr/local/nginx/sbin ./nginx 二.重启 更改配置重启nginx kill -HUP 主进程号或进程号文件路径 或者使用 cd /usr/local/ngin ...
- [转]十步完全理解SQL
原文地址:http://blog.jobbole.com/55086/ 很多程序员视 SQL 为洪水猛兽.SQL 是一种为数不多的声明性语言,它的运行方式完全不同于我们所熟知的命令行语言.面向对象的程 ...
- dede使用方法----如何自定义字段
我们在用dede做东西的时候,有时候需要添加一些dede里面没有的字段,有dede后台里面可以添加相关的自段,下面我就以如何给产品添加一个价格的字段来讲述一下如何给dede添加字段,并且调用它. 1. ...
- Java反射机制详解
Java反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取的信息以及动态调用对象的方法的功能称为Java语言的反 ...
- 77.Android之代码混淆
转载:http://www.jianshu.com/p/7436a1a32891 简介 作为Android开发者,如果你不想开源你的应用,那么在应用发布前,就需要对代码进行混淆处理,从而让我们代码即使 ...
- 天气查询SDK
简介: 这是一个用于查询天气的SDK,在很多时候,尤其是对接多而小功能公众账号的时候,天气查询比较使用,此SDK就是这样的用途,使用的是中国天气网的API,已经集成了网上最靠谱的方式来实现,包括里面的 ...
- install docker on xubuntu
ref: https://docs.docker.com/engine/installation/linux/ubuntulinux/#/install-the-latest-version ps: ...
- Uva11374 Airport Express
最短路问题. 从起点和终点开始各跑一次dijkstra,可以得到起点.终点到任意点的距离.枚举使用的商业线路,找最优解. 破题卡输出,记录前驱和输出什么的仿佛比算法本身还麻烦. /*by Silver ...
- Nginx research, nginx module development
catalog . 初探nginx架构 . handler模块 . Nginx编译.安装.配置 . Hello World模块开发 1. 初探nginx架构 nginx在启动后,在unix系统中会以d ...