1001: [BeiJing2006]狼抓兔子

Description

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下 三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下角(N,M)的窝中去,狼王开始伏击这些兔子.当然 为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔 子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.

Input

第一 行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M

Output

输出一个整数,表示参与伏击的狼的最小数量.

Sample Input

3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6

Sample Output

14

讲讲Dinic算法:(Dinic算法属于最短增广路中的一种)

层次图:每次在残量网络中BFS得到每点到起点的距离;路径是在层次中找的,即d[v] == d[x]+1;比EK算法更高效

优化1:在DFS里面并不是每次只走一条路径,而是DFS到一条最短路之后,在回溯到不含最短边继续搜索;在DFS里面a表示目前为止所有弧的最小残量;而f表示路径的流量;即f<=a;根据a -= f是否等于0来判断是在当前节点几次上继续搜索还是回溯;

优化2:因为一个点可能会被多次搜索到,所以记录下前面搜索到该节点的那条边的序号,这样就不会从头开始搜索了;

ps:图中是无向边,我竟然还是建了反向边cap为0的图,真是醉了;JMJST使用Djistra+heap只用了516ms;我也重写了一个对偶图版本的,348ms~~详见 平面图最小割 对偶图

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define inf 0x3f3f3f3f
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
const int M = *;
int head[M*],tot;
struct edge{
int from,to,cap,flow,Next;
}e[M*];
void ins(int u,int v,int cap)
{
e[tot].Next = head[u];
e[tot].from = u;//为了t->s时由v推到u;
e[tot].to = v;
e[tot].cap = cap;
e[tot].flow = ;
head[u] = tot++;
}
int vis[M],s,t,cur[M],d[M];
queue<int> Q;
int BFS()
{
rep1(i,s,t) vis[i] = ;
vis[s] = ;d[s] = ;
Q.push(s);
while(!Q.empty()){
int u = Q.front();Q.pop();
for(int i = head[u];~i;i = e[i].Next){
int v = e[i].to;
if(!vis[v] && e[i].cap > e[i].flow){ // 只考虑残量网络的弧
vis[v] = ;
d[v] = d[u] + ;
Q.push(v);
}
}
}
return vis[t];
}
int DFS(int x,int a)// a表示目前为止所有弧的最小残量
{
if(x == t || a == ) return a;
int& i = cur[x];//回溯时会多次DFS到同一个点
if(i == ) i = head[x];
int flow = , f;
for(;~i;i = e[i].Next){// 从上次考虑的弧开始
int v = e[i].to;
if(d[v] == d[x]+ && (f = DFS(v,min(a,e[i].cap - e[i].flow))) > ){
e[i].flow += f;
e[i^].flow -= f;
flow += f;
a -= f;// 残量-流量
if(a == ) break;
}
}
return flow;
}
int Dinic()
{
int flow = ;
while(BFS()){//仍然存在增广路时再DFS
rep1(i,s,t) cur[i] = ;//记录当前探索到的点的弧的编号
flow += DFS(s,inf);
}
return flow;
}
void input()
{
int n,m,cost;
read2(n,m);
s = ,t = n*m - ;
MS1(head);tot = ;
rep0(i,,n){
rep0(j,,m-){
read1(cost);
int u = i*m+j;
ins(u,u+,cost);ins(u+,u,cost);
}
}
rep0(i,,n-){
rep0(j,,m){
read1(cost);
int u = i*m+j,v = u + m;
ins(u,v,cost);ins(v,u,cost);
}
}
rep0(i,,n-){
rep0(j,,m-){
read1(cost);
int u = i*m+j,v = u + m + ;
ins(u,v,cost);ins(v,u,cost);//无向边
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
input();
out(Dinic());
return ;
}

【BZOJ】1001: [BeiJing2006]狼抓兔子 Dinic算法求解平面图对偶图-最小割的更多相关文章

  1. BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)

    题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  2. BZOJ 1001: [BeiJing2006]狼抓兔子【最大流/SPFA+最小割,多解】

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 23822  Solved: 6012[Submit][ ...

  3. BZOJ 1001: [BeiJing2006]狼抓兔子

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 20029  Solved: 4957[Submit][ ...

  4. BZOJ 1001 [BeiJing2006]狼抓兔子 (UVA 1376 Animal Run)

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 24727  Solved: 6276[Submit][ ...

  5. BZOJ 1001: [BeiJing2006]狼抓兔子(最短路)

    平面图的最小割转化为对偶图的最短路(资料:两极相通——浅析最大最小定理在信息学竞赛中的应用) ,然后DIJKSTRA就OK了. ------------------------------------ ...

  6. BZOJ 1001: [BeiJing2006]狼抓兔子 最小割

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓 ...

  7. 【刷题】BZOJ 1001 [BeiJing2006]狼抓兔子

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...

  8. [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  9. BZOJ 1001: [BeiJing2006]狼抓兔子(s-t平面图+最短路求最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 题意: 思路:这道题目是最小割题目,但是吧你直接套用Dinic是会超时的. 这里有种很奇妙的做 ...

随机推荐

  1. 应聘.net开发工程师常见的面试题(二)(转载)

    1.公司要求开发一个继承System.Windows.Forms.ListView类的组件,要求达到以下的特殊功能:点击ListView各列列头时,能按照点击列的每行值进行重排视图中的所有行 (排序的 ...

  2. 定时自动同步文件,支持多文件夹同步,支持过滤文件和文件夹,解决FileSystemWatcher多次文件触发事件(源码)

    博客园里面有很多同步工具和软件,关于FileSystemWatcher类解释的也很多,但收集了很多文章后,感觉没好的方法,自己没事写了一个定时文件同步,借鉴了很多博客园朋友的东西: 上主菜: 配置文件 ...

  3. C# 之 Word光标移动 GoTo 方法

    对于 Document 或 Range对象:返回一个 Range对象,该对象代表指定项(例如页.书签或域)的开始位置. 对于 Selection对象:将插入点移至指定项前面的字符位置,并返回一个 Ra ...

  4. multi-threads synchronization use conditional mutex

    #include <pthread.h> int thread_flag; pthread_cond_t thread_flag_cv; pthread_mutex_t thread_fl ...

  5. appscan 安全漏洞修复办法

    appscan 安全漏洞修复办法http://www.automationqa.com/forum.php?mod=viewthread&tid=3661&fromuid=21

  6. 关于JFace带复选框的树

    树的复选框用CheckboxTreeViewer实现.由于其子类ContainerCheckedTreeViewer在没有选择全部子节点时可以自动将父节点设置成灰选,所以实现树的复选框更多的是用Con ...

  7. 关于常用的git命令列表

    我博客园中所写的git内容几乎都是看的蒋鑫老师的<git权威指南>这本书实在太好了. 常用的Git命令. git add  添加到暂存区 git add interactive  交互式添 ...

  8. 用ASP生成RSS

    <% Response.Clear Response.CharSet="gb2312" '数据集 Response.ContentType="text/xml&qu ...

  9. Javascript原型钩沉

    写在前面的总结: JS当中创建一个对象有好几种方式,大体上就是以下几种: ①通过var obj ={...} 这种方式一般称为字面量方式,{}直接写需要定义的字段 ②var obj = new Obj ...

  10. web app开发中 iPhone、iPad默认按钮样式问题

    webapp开发过程中,用html5+css3很方便,而且可以很方便的编译到Android ios等不同平台,但是ios需要单独处理一下,不然会出现一些想象不到的问题.下面就介绍一下各种问题的解决方法 ...