题目:http://poj.org/problem?id=3422

最大费用最大流:

拆点,在自点之间连两条边,一条容量为1,边权为数字;一条容量为k-1,边权为0;表示可以走k次,只有一次能取到数字;

从每个格子能向下或向右走,于是向下面的点、右面的点连边;

将E-K算法中的bfs改成spfa求最长路(边权最大),找出最大流即为答案;

因为对E-K算法不太熟练,WA了n遍,最后发现是不能像dinic一样在bfs中途找到汇点就退出,因为不是构建分层图,而是spfa求最长路。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
queue<int>q;
int n,k,ans,head[],ct=,s,t,inf=1e9,dis[],pre[],incf[];
bool vis[];
struct N{
int to,next,w,v;
N(int t=,int n=,int ww=,int vv=):to(t),next(n),w(ww),v(vv) {}
}edge[];
void add(int x,int y,int ww,int vv)
{
edge[++ct]=N(y,head[x],ww,vv);head[x]=ct;
edge[++ct]=N(x,head[y],,-vv);head[y]=ct;
}
bool bfs()
{
memset(vis,,sizeof vis);
memset(pre,,sizeof pre);
memset(dis,-,sizeof dis);
memset(incf,,sizeof incf);
while(q.size())q.pop();
q.push(s);vis[s]=;dis[s]=;
while(q.size())
{
int x=q.front();q.pop();vis[x]=;
for(int i=head[x];i;i=edge[i].next)
{
int u=edge[i].to;
// if(vis[u])continue;
if(edge[i].w&&dis[u]<dis[x]+edge[i].v)//残量网络spfa
{
dis[u]=dis[x]+edge[i].v;
incf[u]=min(edge[i].w,incf[x]);
pre[u]=i;
if(!vis[u])q.push(u),vis[u]=;
// if(u==t)return 1;//!!!
}
}
}
if(dis[t]<)return ;
else return ;
// return 0;
}
void up()
{
int x=t;
while(x!=s)
{
int i=pre[x];
edge[i].w-=incf[t];
edge[i^].w+=incf[t];
ans+=edge[i].v*incf[t];//
x=edge[i^].to;
}
// ans+=dis[t]*incf[t];// 皆可
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x,p=(i-)*n+j,p2=p+n*n;
scanf("%d",&x);
add(p,p2,,x);
add(p,p2,k-,);//
if(i<n)add(p2,p+n,k,);
if(j<n)add(p2,p+,k,);
}
s=;t=*n*n+;
add(s,,k,);
add(*n*n,t,k,);
while(bfs())up();
printf("%d",ans);
return ;
}

附数据:


数据

poj3422K方格取数——最大费用最大流的更多相关文章

  1. Codevs 1227 方格取数 2(费用流)

    1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...

  2. P2774 方格取数问题 网络最大流 割

    P2774 方格取数问题:https://www.luogu.org/problemnew/show/P2774 题意: 给定一个矩阵,取出不相邻的数字,使得数字的和最大. 思路: 可以把方格分成两个 ...

  3. 洛谷P2045 方格取数加强版(费用流)

    题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...

  4. LG2045 方格取数加强版 费用流

    问题描述 LG2045 题解 费用流. 套路拆点,把\((i,j)\)拆为两个点,在这两个点之间连边:一条边流量为\(1\),费用为\(a_{i,j}\),另一条边为流量为\(INF\),费用为\(0 ...

  5. 【wikioi】1907 方格取数3(最大流+最大权闭合子图)

    http://www.wikioi.com/problem/1907/ 这题我一开始想到的是状压,看到n<=30果断放弃. 然后也想到了黑白染色,然后脑残了,没想到怎么连边. 很简单的一题 黑白 ...

  6. 「网络流24题」「LuoguP2774」方格取数问题(最大流 最小割

    Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方 ...

  7. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

  8. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. Spring里通过注解开启事物

    方式1 <?xml version="1.0" encoding="UTF-8" ?> <beans xmlns="http://w ...

  2. 集群 安装 配置FastDFS

    FastDFS 集群 安装 配置 这篇文章介绍如何搭建FastDFS 集群 FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载 ...

  3. cesium学习--初识

    一.Cesium 官方介绍:CesiumJS是一个开源的JavaScript库,用于世界级的3D地球仪和地图.任务是为静态和时间动态的内容创建领先的3D地球和地图,具有最好的性能.精度.视觉质量.平台 ...

  4. The Gray World Assumption

    Color Constancy 色彩恒常性(2)The Gray World Assumption act=qbbkrzydb_20150408_01" style="line-h ...

  5. Android 实现的EditText响应drawableRight的点击事件

    1.自定义Edittext 实现右侧图标点击清空 package com.dxw.live.view; import android.content.Context; import android.g ...

  6. 【BZOJ4281】[ONTAK2015]Związek Harcerstwa Bajtockiego LCA

    [BZOJ4281][ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点.之后 ...

  7. Python:list、dict、string

    <<List>>列表 [python] view plaincopy 创建列表 sample_list = ['a',1,('a','b')] Python 列表操作 samp ...

  8. VC里OnPaint几点要注意的地方(没有invalidate,系统认为窗口没有更新的必要,于是就对发来的WM_PAINT消息不理不睬)

    写在属于自己的体会,哪怕只是一点点,也是真的懂了.否则有那么多书,如果只是不过脑子的学一遍看一遍,又有谁真的掌握了这些知识呢? 这样你或许就明白了为什么不能直接用SendMessage和PostMes ...

  9. hadoop2.3安装过程及问题解决

    三台serveryiprod01,02,03,当中01为namenode,02为secondarynamenode.3个均为datanode 3台server的这里提到的配置均需一样. 0.安装前提条 ...

  10. h大数据

    安全认证 hw HBase安全认证(创建HBaseHolder时认证) String userPrincipal = FeatureContext.INSTANCE.getOrElse(Constan ...