hadoop HA集群搭建(亲测)
1.hadoop-env.sh
2.core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/app/hadoop-2.7.2/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>spark05:2181,spark06:2181,spark07:2181</value>
</property>
</configuration>
3.hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>spark01:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>spark01:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>spark02:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>spark02:50070</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://spark05:8485;spark06:8485;spark07:8485/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/app/hadoop-2.7.2/journaldata</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
3.mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
4.yarn-site.xml
<configuration>
<!-- 开启RM高可用 -->
<property> <name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property> <name>yarn.resourcemanager.hostname.rm1</name>
<value>spark03</value>
</property>
<property> <name>yarn.resourcemanager.hostname.rm2</name>
<value>spark04</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name> <value>spark05:2181,spark06:2181,spark07:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
5.slaves
spark05
spark06
spark07
启动
1.启动三个zookeeper
2.启动三个journalnode
hadoop-daemon.sh start journalnode
3.格式化HDFS
#在spark01上执行命令:
hdfs namenode -format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/hadoop/hadoop-2.7.2/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到hadoop02的/weekend/hadoop-2.7.2/下。
scp -r tmp/ hadoop02:/home/hadoop/app/hadoop-2.7.2/
##也可以这样,建议hdfs namenode -bootstrapStandby
4格式化ZKFC(在hadoop【spark】01上执行即可)
hdfs zkfc -formatZK
5.启动HDFS(在hadoop【spark】01上执行)
sbin/start-dfs.sh
6.启动YARN(#####注意#####:是在spark03上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
然后手动启动第二个resourcemanager
yarn-daemon.sh start resourcemanager
7.在浏览器中查看nanenode
http://node1:50070
http://node2:50070
8.验证HDFS HA
首先向hdfs上传一个文件
hadoop fs -put /etc/profile /profile
hadoop fs -ls /
然后再kill掉active的NameNode
kill -9
通过浏览器访问:http://192.168.1.202:50070
NameNode ‘hadoop02:9000’ (active)
这个时候weekend02上的NameNode变成了active
9.在执行命令:
hadoop fs -ls /
-rw-r–r– 3 root supergroup 1926 2014-02-06 15:36 /profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.sh start namenode
通过浏览器访问:http://192.168.1.201:50070
NameNode ‘hadoop01:9000’ (standby)
验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out
1.hadoop-env.sh
2.core-site.xml<configuration> <!-- 指定hdfs的nameservice为ns1 --> <property> <name>fs.defaultFS</name> <value>hdfs://ns1/</value> </property> <!-- 指定hadoop临时目录 --> <property> <name>hadoop.tmp.dir</name> <value>/home/hadoop/app/hadoop-2.7.2/tmp</value> </property> <!-- 指定zookeeper地址 --> <property> <name>ha.zookeeper.quorum</name> <value>spark05:2181,spark06:2181,spark07:2181</value> </property> </configuration>
3.hdfs-site.xml<configuration> <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 --> <property> <name>dfs.nameservices</name> <value>ns1</value> </property> <!-- ns1下面有两个NameNode,分别是nn1,nn2 --> <property> <name>dfs.ha.namenodes.ns1</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn1</name> <value>spark01:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn1</name> <value>spark01:50070</value> </property> <!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn2</name> <value>spark02:9000</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn2</name> <value>spark02:50070</value> </property> <!-- 指定NameNode的元数据在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://spark05:8485;spark06:8485;spark07:8485/ns1</value> </property> <!-- 指定JournalNode在本地磁盘存放数据的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/home/hadoop/app/hadoop-2.7.2/journaldata</value> </property> <!-- 开启NameNode失败自动切换 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- 配置失败自动切换实现方式 --> <property> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行--> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence shell(/bin/true) </value> </property> <!-- 使用sshfence隔离机制时需要ssh免登陆 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/hadoop/.ssh/id_rsa</value> </property> <!-- 配置sshfence隔离机制超时时间 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property></configuration>
3.mapred-site.xml<configuration> <!-- 指定mr框架为yarn方式 --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property></configuration>
4.yarn-site.xml<configuration> <!-- 开启RM高可用 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 指定RM的cluster id --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property> <!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!-- 分别指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>spark03</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>spark04</value> </property> <!-- 指定zk集群地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>spark05:2181,spark06:2181,spark07:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property></configuration>
5.slavesspark05 spark06 spark07
启动1.启动三个zookeeper
2.启动三个journalnodehadoop-daemon.sh start journalnode
3.格式化HDFS #在spark01上执行命令: hdfs namenode -format #格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/hadoop/hadoop-2.7.2/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到hadoop02的/weekend/hadoop-2.7.2/下。 scp -r tmp/ hadoop02:/home/hadoop/app/hadoop-2.7.2/ ##也可以这样,建议hdfs namenode -bootstrapStandby 4格式化ZKFC(在hadoop【spark】01上执行即可) hdfs zkfc -formatZK
5.启动HDFS(在hadoop【spark】01上执行) sbin/start-dfs.sh
6.启动YARN(#####注意#####:是在spark03上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动) sbin/start-yarn.sh
然后手动启动第二个resourcemanageryarn-daemon.sh start resourcemanager
7.在浏览器中查看nanenode http://node1:50070http://node2:50070
8.验证HDFS HA 首先向hdfs上传一个文件 hadoop fs -put /etc/profile /profile hadoop fs -ls / 然后再kill掉active的NameNode kill -9 通过浏览器访问:http://192.168.1.202:50070 NameNode ‘hadoop02:9000’ (active) 这个时候weekend02上的NameNode变成了active
9.在执行命令: hadoop fs -ls / -rw-r–r– 3 root supergroup 1926 2014-02-06 15:36 /profile 刚才上传的文件依然存在!!! 手动启动那个挂掉的NameNode sbin/hadoop-daemon.sh start namenode 通过浏览器访问:http://192.168.1.201:50070 NameNode ‘hadoop01:9000’ (standby) 验证YARN: 运行一下hadoop提供的demo中的WordCount程序: hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out
https://blog.csdn.net/u013821825/article/details/51377415
hadoop HA集群搭建(亲测)的更多相关文章
- hadoop ha集群搭建
集群配置: jdk1.8.0_161 hadoop-2.6.1 zookeeper-3.4.8 linux系统环境:Centos6.5 3台主机:master.slave01.slave02 Hado ...
- hadoop HA集群搭建步骤
NameNode DataNode Zookeeper ZKFC JournalNode ResourceManager NodeManager node1 √ √ √ √ node2 ...
- 大数据-hadoop HA集群搭建
一.安装hadoop.HA及配置journalnode 实现namenode HA 实现resourcemanager HA namenode节点之间通过journalnode同步元数据 首先下载需要 ...
- Hadoop HA集群的搭建
HA 集群搭建的难度主要在于配置文件的编写, 心细,心细,心细! ha模式下,secondary namenode节点不存在... 集群部署节点角色的规划(7节点)------------------ ...
- 基于zookeeper的高可用Hadoop HA集群安装
(1)hadoop2.7.1源码编译 http://aperise.iteye.com/blog/2246856 (2)hadoop2.7.1安装准备 http://aperise.iteye.com ...
- hadoop2.8 ha 集群搭建
简介: 最近在看hadoop的一些知识,下面搭建一个ha (高可用)的hadoop完整分布式集群: hadoop的单机,伪分布式,分布式安装 hadoop2.8 集群 1 (伪分布式搭建 hadoop ...
- Hadoop分布式集群搭建
layout: "post" title: "Hadoop分布式集群搭建" date: "2017-08-17 10:23" catalog ...
- Hadoop+HBase 集群搭建
Hadoop+HBase 集群搭建 1. 环境准备 说明:本次集群搭建使用系统版本Centos 7.5 ,软件版本 V3.1.1. 1.1 配置说明 本次集群搭建共三台机器,具体说明下: 主机名 IP ...
- 全网最详细的Hadoop HA集群启动后,两个namenode都是active的解决办法(图文详解)
不多说,直接上干货! 这个问题,跟 全网最详细的Hadoop HA集群启动后,两个namenode都是standby的解决办法(图文详解) 是大同小异. 欢迎大家,加入我的微信公众号:大数据躺过的坑 ...
随机推荐
- spawn类参数command详解
我们主要来看spawn类它的构造方法参数主要有command,从字面上就是指spawn类的子程序用来执行的子程序,也就是系统所能够执行的相应的命令,对于command这个参数,我们是以字符串的方式给出 ...
- 最简单的Windows程序
准备研究一下vmp 保护,从一个最简单的Windows程序入手似乎是个不错的想法. 如何才最简单呢,仅仅有一个MessageBox 调用好了. 弹出消息.退出,哦也,够简单吧. 祭出法器VC2010. ...
- [自动化平台系列] - 初次使用 Macaca-前端自动化测试(3)
1. 如果是一个列表页面,当要触发编辑页面是如何做的呢?其实我测试只要点击第一条数据去编辑就好啦!如果页面结构如下 <li class="myatc-li"> < ...
- SpringBoot-(1)-IDEA创建SpringBoot项目并运行访问接口
一,安装IDEA mac安装IDEA IDEA配置Tomcat 二,创建SpringBoot项目 1,打开IDEA,点击Create New Project 2,选择自己所安装的JDK.如果没有配置J ...
- 区分:AndroidDriver, iOSDriver, AppiumDriver and Remote WebDriver
区分:AndroidDriver, iOSDriver, AppiumDriver and Remote WebDriver 原文地址:https://discuss.appium.io/t/what ...
- Android 6.0 如何默认打开user版本的root权限【转】
本文转载自:http://blog.csdn.net/wangjicong_215/article/details/77601638 1.system/core/adb/Android.mkdiff ...
- bzoj4474: [Jsoi2015]isomorphism
树hash啊 我的做法很垃圾,就是yy一种只有一个孩子时hash值和孩子一样的hash法 然后用重心去作为根遍历 这样有点问题,就是重心假如也是要删掉的那就gg了 那我们求tot的时候删掉的点就不管直 ...
- socket技术与负载均衡
网络编程 Nginx1.9之前使用 Lvs Haproxy 实现四层反向和负载均衡 Lvs可以i应用到所有负载均衡的功能 数据库 web服务等 四层负载均衡,根据连接进行保存. 断开,连接.进行轮训 ...
- CyclicBarrier及CountDownLatch的使用
CountDownLatch位于java.util.concurrent包下,是JDK1.5的并发包下的新特性. 首先根据Oracle的官方文档看看CountDownLatch的定义: A synch ...
- python pickle/cPickle模块
序列化(picking): 把变量从内存中变成可存储或传输的过程称为序列化,序列化之后,就可以把序列化的对象写入磁盘,或者传输给其他设备; 反序列化(unpickling):相应的,把变量的内容从序列 ...