UVa 12167 & HDU 2767 强连通分量 Proving Equivalences
题意:给出一个有向图,问最少添加几条有向边使得原图强连通。
解法:求出SCC后缩点,统计一下出度为0的点和入度为0的点,二者取最大值就是答案。
还有个特殊情况就是本身就是强连通的话,答案就是0.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std; const int maxn = + ; int n, m; vector<int> G[maxn]; stack<int> S;
int pre[maxn], low[maxn], sccno[maxn];
int dfs_clock, scc_cnt; void dfs(int u, int fa)
{
low[u] = pre[u] = ++dfs_clock;
S.push(u); for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v, u);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v]) low[u] = min(low[u], pre[v]);
} if(pre[u] == low[u])
{
scc_cnt++;
for(;;)
{
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc()
{
memset(pre, , sizeof(pre));
memset(sccno, , sizeof(sccno));
dfs_clock = scc_cnt = ;
for(int i = ; i <= n; i++) if(!pre[i]) dfs(i, );
} int in[maxn], out[maxn]; int main()
{
int T; scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++) G[i].clear();
while(m--)
{
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v);
} find_scc(); if(scc_cnt == ) { puts(""); continue; } memset(in, , sizeof(in));
memset(out, , sizeof(out));
for(int i = ; i <= n; i++)
for(int j = ; j < G[i].size(); j++)
{
int u = sccno[i], v = sccno[G[i][j]];
if(u != v) { out[u]++; in[v]++; }
} int hehe = , haha = ;
for(int i = ; i <= scc_cnt; i++)
{
if(!in[i]) hehe++;
if(!out[i]) haha++;
}
printf("%d\n", max(hehe, haha));
} return ;
}
代码君
UVa 12167 & HDU 2767 强连通分量 Proving Equivalences的更多相关文章
- HDU 3072 (强连通分量)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3072 题目大意:为一个有向连通图加边.使得整个图全连通,有重边出现. 解题思路: 先用Tarjan把 ...
- hdu 4685(强连通分量+二分图)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:n个王子和m个公主,王子只能和他喜欢的公主结婚,公主可以和所有的王子结婚,输出所有王子可能 ...
- hdu 4685(强连通分量+二分图的完美匹配)
传送门:Problem 4685 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:二分图的最大匹配.完美匹配和匈牙利算法 [ ...
- hdu 2767 强连通缩点处理加边问题
#include <cstring> #include <cstdlib> #include <cstdio> 缩点的好处就是可以将乱七八糟的有向图 转化为无环的有 ...
- HDU 2767:Proving Equivalences(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:给出n个点m条边,问在m条边的基础上,最小再添加多少条边可以让图变成强连通.思路:强连通分量缩点后找 ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- 有向图 加最少的边 成为强连通分量的证明 poj 1236 hdu 2767
poj 1236: 题目大意:给出一个有向图, 任务一: 求最少的点,使得从这些点出发可以遍历整张图 任务二: 求最少加多少边 使整个图变成一个强连通分量. 首先任务一很好做, 只要缩点 之后 求 ...
随机推荐
- nodejs 实践:express 最佳实践(三) express 解析
nodejs 实践:express 最佳实践(三) express 解析 nodejs 发展很快,从 npm 上面的包托管数量就可以看出来.不过从另一方面来看,也是反映了 nodejs 的基础不稳固, ...
- css3Transitions 实现的鼠标经过图标位移、旋转、翻转、发光、淡入淡出等多种特效
HTML如下: 1 <div class="container"> 3 <!--特效1 --> <section id="set-1&q ...
- 从0到1分步实现一个出生日期的正则表达式(JavaScript)
简言 在表单验证中,经常会用正则表达式做出生日期校验.本文把出生日期分割成几个部分,分步地介绍了实现一个出生日期校验的完整过程.相信您在理解了本篇的内容后,对如何编写和如何应用正则表达式会有进一步的理 ...
- python读xml文件
# -*- coding:utf-8 -*- import jsonimport requestsimport os curpath=os.path.dirname(os.path.realpath( ...
- Python+selenium之测试报告(2)
# -*- coding: utf-8 -*- import HTMLTestReport import HTMLTestRunner import os import sys import time ...
- web端 repeat和简单控件
<%@ %> - 这里面写一些声明和引用的<% %> - 编写C#代码的<%= %><%# %> Repeater - 重复器 相当于winfo ...
- python 之format字符串格式化
print函数之format字符串格式化方法的使用与学习笔记. 一.映射关系 (1)“映射”示例,以下通过位置举例说明: [+]Example_1: >>> print(" ...
- package.json相关疑惑总结
语义版本控制(node-semver) X.Y.Z,主要版本X,次要版本Y,补丁Z X:代表一个破坏兼容性的大变化: Y:表示不会破坏任何内容的新功能: Z:表示不会破坏任何内容的错误修复: pack ...
- 【Python图像特征的音乐序列生成】如何标记照片的特征
目前我能想到的办法是这样的: 1,提取照片中的实体特征,借用某个pre-trained model进行tag标记. 2,将特征组合起来,形成一个bag-of-word model,然后将这个向量作为输 ...
- HDU 5451 Best Solver(fibonacci)
感谢这道题让我复习了一遍线代,还学习了一些奇奇怪怪的数论. 令 二项展开以后根号部分抵消了 显然有 所以要求的答案是 如果n比较小的话,可以直接对二项式快速幂,但是这题n很大 这个问题和矩阵的特征值以 ...