●BZOJ 4361 isn
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4361
题解:
容斥,DP,树状数组
注意题意:一旦变成了非降序列,就停止操作。即对非降序列进行操作是非法的。
首先求出 dp[i][j]:表示以第i个数作为结尾且长度为j的不降序列的种类数
转移显然 : dp[i][j]+=dp[k][j-1] k<i且a[k]<=a[j],复杂度 O(N^3)
可以用 树状数组优化到 O(N^2*log2N),(要开 N个树状数组)
然后得到 g[j]+=dp[i][j]:表示长度为 j的不降序列的种类数。
在令 w[i]=g[i]*(N-i)!含义是留下的i个数,组成非降序列,那 N-i个数有(N-i)!种方法把它们拿走。
那么 答案就是 w[1] + w[2] + w[3] +.....
完了么?当然没有,细细一想,w[ ]好像有问题:
不是说一旦变成了非降序列,就要停止操作么,
所以 w[i]完全可能会存在某个方案还没操作完就已经非降了,那么要减去这些方案。
怎么减呢?
不难发现,w[i+1]里包含了两类方案,
一类是取了N-(i+1)个数后恰好变成非降序列,这类是合法的操作
另一类是还没有取到第N-(i+1)个数就已经非降了,那么这类操作就是非法的
同时对于 w[i]来说,其中包含的非法方案就是上面两类操作的方案数*(i+1), 即w[i+1]*(i+1)
所以减去就好了 : w[i]-=w[i+1]*(i+1)
最后的答案才是 w[1] + w[2] + w[3] +.....
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 2050
#define _ %mod
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int mod=1000000007;
struct BIT{
int val[MAXN][MAXN],N;
void Init(int n){
N=n;
memset(val,0,sizeof(val));
}
int Lowbit(int x){
return x&-x;
}
void Modify(int id,int p,int x){
for(int i=p;i<=N;i+=Lowbit(i))
val[id][i]=(1ll*val[id][i]+x)_;
}
int Query(int id,int p){
int ans=0;
for(int i=p;i;i-=Lowbit(i))
ans=(1ll*ans+val[id][i])_;
return ans;
}
}t;
int dp[MAXN][MAXN],g[MAXN],a[MAXN],fac[MAXN]; //dp[i][j] 以i结尾,序列长度为 j的方案
int N,ANS;
int main()
{
static int tmp[MAXN],M;
scanf("%d",&N); t.Init(N); fac[0]=1;
for(int i=1;i<=N;i++) fac[i]=(1ll*fac[i-1]*i)_;
for(int i=1;i<=N;i++) scanf("%d",&a[i]),tmp[i]=a[i];
sort(tmp+1,tmp+N+1); M=unique(tmp+1,tmp+N+1)-tmp-1;
for(int i=1;i<=N;i++) a[i]=lower_bound(tmp+1,tmp+M+1,a[i])-tmp;
for(int i=1;i<=N;i++){
for(int j=i;j>=2;j--){
dp[i][j]=t.Query(j-1,a[i]);
t.Modify(j,a[i],dp[i][j]);
}
dp[i][1]=1; t.Modify(1,a[i],dp[i][1]);
}
for(int j=1;j<=N;j++){
for(int i=1;i<=N;i++)
g[j]=(1ll*g[j]+dp[i][j])_;
g[j]=(1ll*g[j]*fac[N-j])_;
}
for(int i=1;i<=N;i++)
g[i]=(1ll*g[i]-(1ll*g[i+1]*(i+1))_+mod)_,ANS=(1ll*ANS+g[i])_;
printf("%d",ANS);
return 0;
}
●BZOJ 4361 isn的更多相关文章
- BZOJ 4361 isn | DP 树状数组
链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...
- 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 218 Solved: 126 Description 给出一个长度为n的序列A( ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
- [BZOJ 4361]isn
Description 题库链接 给出一个长度为 \(n\) 的序列 \(A\) .如果序列 \(A\) 不是非降的,你必须从中删去一个数,这一操作,直到 \(A\) 非降为止.求有多少种不同的操作方 ...
- #1 // BZOJ 4361 isn
Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. 题 ...
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- 【BZOJ】4361: isn
题解 可以想一下保留一个长度为k的不降序列方案数是\(f[k] (n - k)!\) \(f[k]\)是有多少个长度为k的不降序列 我们去掉不合法的,一定是前一次操作的时候有一个长度为\(k + 1\ ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
随机推荐
- ajax 返回Json方法
public static void sendJsonData(String data) { ActionContext ac = ActionContext.getContext(); HttpSe ...
- 关于 Form 表单的 enctype 属性
enctype 属性一共有3个值 application/x-www-form-urlencoded 在发送前编码所有字符(默认) multipart/form-data 上传二进制数据, 所以在使用 ...
- Python内置函数(7)——sum
英文文档: sum(iterable[, start]) Sums start and the items of an iterable from left to right and returns ...
- GIT入门笔记(14)- 链接到远程仓库
1.远程仓库地址https://github.com/ 2.注册远程仓库账号 3.生成ssh-key,并配置到github 由于你的本地Git仓库和GitHub仓库之间的传输是通过SSH加密的,所以, ...
- Python 爬取淘宝商品信息和相应价格
!只用于学习用途! plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"',html) :获得商品价格和view_pri ...
- 阿里安全归零实验室招聘各路大牛!offer好说!
阿里安全归零实验室成立于2017年11月,致力于对黑灰产技术的研究.实验室的愿景是通过技术手段解决当前日益严重的网络违规和网络犯罪问题,为阿里新经济体保驾护航. 实验室与寄生在阿里生态经济体的黑灰产直 ...
- 【已解决】React中配置Sass引入.scss文件无效
React中配置Sass引入.scss文件无效 在react中使用sass时,引入.scss文件失效 尝试很多方法没法解决,最终找到解决方法,希望能帮助正在坑里挣扎的筒子~ 在node_modules ...
- Java-Maven(六):Eclipse中Maven插件的命令操作
之前几个章节学习了maven的概念,及maven插件安装后如何创建工程,那么maven工程中是如何使用maven命令呢?本章节将会学习这个话题. 在pom.xml中配置maven命令插件 如果向在ma ...
- jquery中substring,substr,split的用法
一.substring 方法 返回位于 String 对象中指定位置的子字符串. strVariable.substring(start, end) "String Literal" ...
- angularJs-route路由详解
本篇基于ng-route来讲下angular中的路由,路由功能主要是 $routeProvider服务 与 ng-view 实现. ng-view的实现原理,是根据路由的切换,动态编译html模板-- ...