BZOJ 2969: 矩形粉刷(期望)
题意
给你一个\(w*h\)的方阵,不断在上面刷格子。每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色。共染\(k\)次,问最后被染色的格子的期望值。
题解
(参考了liu_runda大佬的博客)
这真是一道好题~ 思维比较巧妙~
因为我们无法直接考虑每个点\(k\)次后被染色的期望(想一想,为什么)
正难则反,我们可以考虑\(k\)次后没被染色的期望,所以原来被染色的期望就可以转化为\(1-\)没有被染色的期望。
然后期望的线性性使得我们能够直接计算出每个点的答案。
我们先求它一次没有被染色的期望,在求它的\(k\)次方就行了。
我也不是直接求它没被染色的期望,而先求它被染色的期望,再用\(1-\)它就行了。
注意我这里化了两次,一次是求\(k\)次时,一次是求单次的时候,两次化的不同 也就是最后被染色的期望就是 \([1-(1-p)^k]\)
则先求它左上方选个点(要包括该点,后同)和右下方选点的方案数 加上 它右上方和左下方选点的方案数。
这个可以直接乘法原理算出来,但这个会算重复,可以画个图理解理解(我没画图,就调了贼久。。)
就是它所在的列和行的期望会算两遍,所以我们要减去这些贡献。然后中间的又少算了一遍,又要加上。
因为我们选择是有序的,但它选择是无序的,所以要乘上一个\(2\)。
但有一个特殊点我一直算错了,就是自己本身选两遍的方案不能乘\(2\),因为你本身考虑的就是无序的了。
然后用当前的方案数除以总方案数\((w*h)^2\)就可以得出它一次被染色期望了,然后瞎搞搞就行了。
我的代码应该是网上所见的最简洁的了QAQ
代码
/**************************************************************
Problem: 2969
Language: C++
Result: Accepted
Time:204 ms
Memory:1288 kb
****************************************************************/
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("P2969.in", "r", stdin);
freopen ("P2969.out", "w", stdout);
#endif
}
double Pow(double x, int power) {
double res = 1.0;
for (; power; power >>= 1, x *= x)
if (power & 1) res *= x;
return res;
}
#define area(xl, yl, xr, yr) ((xr - xl + 1) * (yr - yl + 1))
int k, w, h;
double allprob, plan, expect = 0.0, now;
int main () {
File();
cin >> k >> w >> h;
allprob = (double)(w * h) * (w * h);
For (i, 1, w)
For (j, 1, h) {
plan = 0;
plan += (double)area(1, 1, i, j) * area(i, j, w, h);
plan += (double)area(1, j, i, h) * area(i, 1, w, j);
plan -= (double)i * (w - i + 1);
plan -= (double)j * (h - j + 1);
plan = plan * 2 + 1;
now = 1.0 - Pow(1.0 - plan / allprob, k);
expect += now;
}
printf ("%.0lf\n", expect);
return 0;
}
BZOJ 2969: 矩形粉刷(期望)的更多相关文章
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
- bzoj 2969: 矩形粉刷 概率期望+快速幂
还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...
- 【bzoj2969】矩形粉刷 期望
题目描述 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩 ...
- 【BZOJ2969】矩形粉刷 概率+容斥
[BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...
- bzoj2969 矩形粉刷 概率期望
此题在bzoj是权限题,,,所以放另一个oj的链接 题解: 因为期望线性可加,所以可以对每个方格单独考虑贡献.每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)每个方格至少 ...
- BZOJ 2969 期望
思路: 我们可以分开算每个格子自己的期望啊... 期望可以累加的 那就把这个大格子 分成 9个部分 分别算好了... //By SiriusRen #include <cmath> #in ...
- bzoj2969 矩形粉刷
学习一波用markdown写题解的姿势QAQ 题意 给你一个w*h的矩形网格,每次随机选择两个点,将以这两个点为顶点的矩形内部的所有小正方形染黑,问染了k次之后期望有多少个黑色格子. 分析 一开始看错 ...
- Bzoj 3450: Tyvj1952 Easy (期望)
Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...
- Bzoj 4720 换教室 (期望DP)
刚发现Bzoj有Noip的题目,只会换教室这道题..... Bzoj 题面:Bzoj 4720 Luogu题目:P1850 换教室 大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大 ...
随机推荐
- 脚本实现centos7修改二块网卡名称并配置ip信息
#!/bin/bash interface1=`ls /sys/class/net|grep en|awk 'NR==1{print}'`interface2=`ls /sys/class/net|g ...
- 【Unity3D技术文档翻译】第1.1篇 AssetBundle 工作流
译者前言:本章是关于从创建到加载,再到使用 AssetBundle 的整个流程的概述.阅读本章将对 AssetBundle 的工作流程有个简单而全面的了解. 本章原文所在章节:[Unity Manua ...
- chromedriver与chrome版本映射表(最新)
selenium想在chrome进行跑,前提需要下载chromedriver,以下整理了chromedriver与chrome的对应关系表 chromedriver(下载地址):http://chro ...
- 基于jquery的城市选择插件
城市选择插件的难度不是很大,主要是对dom节点的操作.而我写的这个插件相对功能比较简答,没有加入省市联动. 上代码好了,参照代码的注释应该比较好理解. /* *基于jquery的城市选择插件 *aut ...
- MVC5中使用Log4Net
最早搜到的是这篇: http://www.codeproject.com/Articles/823247/How-to-use-Apache-log-net-library-with-ASP-NET- ...
- js的继承实现
1.原型链继承 1.创建父类对象2.创建子类函数对象3.将父类的实例对象赋值给子类的原型4.将子类的原型属性的构造函数设置为 子类本身 function Person(name) { this.nam ...
- maven The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path错误
对于这个问题的话,请在pom文件中加入 <dependency> <groupId>javax.servlet</groupId> <artifactId&g ...
- Mysql给某一台主机授权访问,修改root密码
ubuntu上用的是phpstudy,安装好之后,敲mysql,提示没有,需要安装mysql的客户端. 安装好之后直接敲mysql,敲 mysql 再敲use mysql 再敲mysql -uroot ...
- axios + mock.js模拟数据实现前后端分离开发的实例代码
首先就是必须安装axios和mock.js npm install axios npm install mockjs 1. 然后在文档src中新建一个mock.js文件,如图 2. 在main.js中 ...
- JS Cookie丢失问题
JS Cookie丢失问题 前些天有人问我vue中使用proxy发送请求,为什么请求时cookie丢失,首先说一下我对cookie的理解: 1.cookie在正常情况下是会在每次请求时自动携带, 2. ...