DP?

Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)
Total Submission(s): 3126    Accepted Submission(s): 978

Problem Description
Input
Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
 

数据范围诡异系列~
题意:杨辉三角可以往左或者往右走走到$(n,k)$的最小权值和

显然每一层都要取一个权值,并且越往外权值越小,当然是尽量往外最好啦
对称,k>n/2时变成n-k
如果从$(n,k)$向左斜着上去,结果就是
${n\choose k}+{n-1\choose k-1}+...+{n-k\choose 0}+n-k$
然后用组合数递推式合并,就是
${n+1\choose k}+n-k$
 
问题在于T太大啦,以致于<10000的质数远比T小,我们预处理模所有质数意义下的阶乘吧!
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=;
int n,m,P;
bool notp[N];
int p[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
int fac[N][],mp[N],pnum;
void ini(int n){
sieve(n);
for(int j=;j<=p[];j++){
int x=p[j];mp[x]=j;
fac[][j]=;
for(int i=;i<=n;i++) fac[i][j]=fac[i-][j]*i%x;
}
}
int Pow(int a,int b){
int re=;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
int Inv(int a){return Pow(a,P-);}
int C(int n,int m){
if(n<m) return ;
return fac[n][pnum]*Inv(fac[m][pnum])%P*Inv(fac[n-m][pnum])%P;
}
int Lucas(int n,int m){
if(n<m) return ;
int re=;
for(;m;n/=P,m/=P) re=re*C(n%P,m%P)%P;
return re;
}
int main(){
freopen("in","r",stdin);
int cas=;
ini();
while(scanf("%d%d%d",&n,&m,&P)!=EOF){
if(m>n/) m=n-m;
pnum=mp[P];
printf("Case #%d: %d\n",++cas,(Lucas(n+,m)+n-m)%P);
}
}
 
 
 
 
 
 

HDU 3944 DP? [Lucas定理 诡异的预处理]的更多相关文章

  1. HDU 3944 DP? (Lucas定理)

    题意:在杨辉三角中让你从最上面到 第 n 行,第 m 列所经过的元素之和最小,只能斜向下或者直向下走. 析:很容易知道,如果 m 在n的左半部分,那么就先从 (n, m)向左,再直着向上,如果是在右半 ...

  2. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

  3. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  4. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  5. [CTSC2017][bzoj4903] 吉夫特 [状压dp+Lucas定理]

    题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案 ...

  6. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  7. hdu 3944 dp?

    DP? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)Total Subm ...

  8. 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

    题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...

  9. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

随机推荐

  1. .NET MongoDB Driver 2.2使用示例

    说明:mongoDBService是对各种常用操作的封装 public class MongoDBService { #region 变量 /// <summary> /// 缓存 /// ...

  2. [国嵌攻略][051][NandFlash原理解析]

    扮演角色 相当于嵌入式设备的硬盘 NandFlash分类 1.SCL(single level cell):单层式存储 2.MLC(multi level cell):多层式存储 3.SCL在存储格上 ...

  3. Oracle_事务

    Oracle_事务 -事物管理   create table account(        id number,        money number );     --实现转账操作 update ...

  4. git上传项目全部流程

    一.下载git 进入网址:https://git-scm.com/downloads: 点击中的Download 2.16.0 for Windows; 在中选择蓝色字段点击,根据电脑64或32位选择 ...

  5. base64是啥原理

    Base64是一种基于64个可打印字符来表示二进制数据的表示方法.由于2的6次方等于64,所以每6个比特为一个单元,对应某个可打印字符.三个字节有24个比特,对应于4个Base64单元,即3个字节可表 ...

  6. 最常用Python开源框架有哪些?

    Python开源框架有很多,像Django.Flask.webpy等等,但哪些是最常用到的呢?我们收集了一些Python使用者的宝贵意见,把他们认为最常用的Python开源框架简单的介绍给大家. 一. ...

  7. 怎么使用linux命令重启服务器

    一下的命令都可以重启Linux服务器: 1.shutdown -r now 2.reboot 3.startx

  8. QTP10破解方法及mgn-mqt82.exe下载

    经试验可以成功安装license,具体步骤如下:一.从HP官方网上下载QTP10.0并安装.二.安装成功后,在C:\Program Files\Common Files\Mercury Interac ...

  9. 如何将阿里云mysql RDS备份文件恢复到自建数据库

    参考地址:https://help.aliyun.com/knowledge_detail/41817.html PS:目前恢复只支持 Linux 下进行.Linux下恢复的数据文件,无论 Windo ...

  10. 策略模式--List排序

    需求:根据姓名进行排序,升序或者降序,如果名字一样,就按照id升序排序,用策略模式 步骤一: 定义一个Person对象 public class Person { private Integer id ...