BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]
题意:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
显然树链剖分可做,但我是来练欧拉序列的
和splay维护一样了
其实没大有意义....如果树形态不改变人家树链剖分本来就可以维护子树信息....
唯一的好处就是不会爆栈吧
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define lc x<<1
#define rc x<<1|1
#define mid ((l+r)>>1)
#define lson lc, l, mid
#define rson rc, mid+1, r
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=2e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n, Q, op, x, y, a[N];
struct edge{int v, ne;} e[N<<];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
e[++cnt]=(edge){u, h[v]}; h[v]=cnt;
}
pii dfn[N]; int dfc, eul[N];
void dfs(int u, int fa) {
dfn[u].fir = ++dfc; eul[dfc] = u;
for(int i=h[u]; i; i=e[i].ne) if(e[i].v != fa) dfs(e[i].v, u);
dfn[u].sec = ++dfc; eul[dfc] = -u;
} struct SegTre {
struct meow{ll sum, tag; int sl, sr;} t[N<<];
inline void merge(int x) {
t[x].sum = t[lc].sum + t[rc].sum;
t[x].sl = t[lc].sl + t[rc].sl;
t[x].sr = t[lc].sr + t[rc].sr;
}
inline void paint(int x, ll v) {
t[x].sum += (t[x].sl - t[x].sr)*v;
t[x].tag += v;
}
inline void pushDown(int x) {
if(t[x].tag) {
paint(lc, t[x].tag);
paint(rc, t[x].tag);
t[x].tag = ;
}
}
void build(int x, int l, int r) {
if(l==r) {
if(eul[l] > ) t[x].sum = a[eul[l]], t[x].sl = ;
else t[x].sum = -a[-eul[l]], t[x].sr = ;
}else {
build(lson);
build(rson);
merge(x);
}
} void Add(int x, int l, int r, int p, int v) {
if(l==r) paint(x, v);
else {
pushDown(x);
if(p<=mid) Add(lson, p, v);
else Add(rson, p, v);
merge(x);
}
}
void Add2(int x, int l, int r, int ql, int qr, ll v) {
if(ql<=l && r<=qr) paint(x, v);
else {
pushDown(x);
if(ql<=mid) Add2(lson, ql, qr, v);
if(mid<qr) Add2(rson, ql, qr, v);
merge(x);
}
}
ll Que(int x, int l, int r, int ql, int qr) {
if(ql<=l && r<=qr) return t[x].sum;
else {
pushDown(x);
ll ans=;
if(ql<=mid) ans += Que(lson, ql, qr);
if(mid<qr) ans += Que(rson, ql, qr);
return ans;
}
}
}seg;
int main() {
freopen("in","r",stdin);
n=read(); Q=read();
for(int i=; i<=n; i++) a[i]=read();
for(int i=; i<n; i++) x=read(), y=read(), ins(x, y);
dfs(, ); seg.build(, , dfc);
for(int i=; i<=Q; i++) {
op=read(); x=read();
if(op==) printf("%lld\n", seg.Que(, , dfc, dfn[].fir, dfn[x].fir));
else{
y=read();
if(op==) seg.Add(, , dfc, dfn[x].fir, y), seg.Add(, , dfc, dfn[x].sec, y);
else seg.Add2(, , dfc, dfn[x].fir, dfn[x].sec, y);
}
}
}
BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]的更多相关文章
- BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)
题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4352 Solved: 1387[Submit][Stat ...
- bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 6779 Solved: 2275[Submit][Stat ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- [BZOJ]4034: [HAOI2015]树上操作
[HAOI2015]树上操作 传送门 题目大意:三个操作 1:a,b,c b节点权值+c 2:a,b,c 以b为根的子树节点权值全部+c 3:a,b 查询b到根路径的权值和. 题解:树链剖分 操作1 ...
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- 洛谷 P3178 BZOJ 4034 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- BZOJ 4034[HAOI2015]树上操作(树链剖分)
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...
随机推荐
- Redis介绍及Jedis测试
1.Redis简介 Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. 它支持多种类型的数据结构,如 字符串(strings), 散列(hashes ...
- 什么是 core dump ? 以及如何使用gdb对 core dumped 进行调试
什么是core dump?(down = 当) core的意思是:内存,dump的意思是:扔出来.堆出来. 开发和使用linux程序时,有时程序莫名其妙的down掉了,却没有任何的提示(有时候会提示c ...
- 制作ssh互信的docker镜像
Dockerfile FROM ubuntu:16.04 # package RUN apt-get update; apt-get -y install ssh COPY ssh_config /e ...
- linux 下CentOS 下 npm命令安装gitbook失败的问题
运行环境 linux 服务器:CentOS 7.0 系统:安装了nodejs :使用 npm 安装 gitbook 出现错误提示: npm install -g gitbook-cli symbol ...
- ADO.NET复习总结(2)--连接池
1. 2. 3.示例:在一百次循环中,执行数据库连接的打开和关闭,使用stopwatch查看所用的时间. using System; using System.Collections.Generic; ...
- <button>与<input type="button">的区别
一.定义和用法 <button> 标签定义的是一个按钮. 在 button 元素内部,可以放置文本或图像.这是<button>与使用 input 元素创建的按钮的不同之处. 二 ...
- java 三大框架
SSH即:Spring.Struts.HibernateSpring:功能强大的组件粘合济,能够将你的所有的java功能模块用配置文件的方式组合起来(还让你感觉不到spring的存在)成为一个完成的应 ...
- Redis的事务功能详解
Redis的事务功能详解 MULTI.EXEC.DISCARD和WATCH命令是Redis事务功能的基础.Redis事务允许在一次单独的步骤中执行一组命令,并且可以保证如下两个重要事项: >Re ...
- J.U.C CAS
在JDK1.5之前,也就是J.U.C加入JDK之前,Java是依靠synchronized关键字(JVM底层提供)来维护协调对共享字段的访问,保证对这些变量的独占访问权,并且以后其他线程忽的该锁时,将 ...
- struts文件异常Included file cannot be found
1.命名规范,都是采用struts-xxx.xml文件,即以struts开头 2.file的路径不要以/开头,在其他版本是以/开头的 <include file="/com/bjsxt ...