题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036

min-max容斥:https://blog.csdn.net/ez_2016gdgzoi471/article/details/81416333

二项式反演:https://blog.csdn.net/ez_2016gdgzoi471/article/details/81408416

而出现 \( S \) 的期望,就是 \( S \) 每一位出现的期望中的最大值;

所以

\( E(S) = max(S) = \sum\limits_{T \subseteq S} (-1)^{|T|-1} min(T) \)

\( min(T) = \frac{1}{ \sum\limits_{K \cap T \neq \varnothing} p_{K} } \)

\( \sum\limits_{K \cap T \neq \varnothing} p_{K} = 1 - \sum\limits_{k \subseteq C_{U}^{T} } p_{k} \)

求个高维前缀和(FMT)即可。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define eps 1e-6
using namespace std;
typedef double db;
int const xn=(<<)+;
int n,bin[];
bool vis[]; db p[xn],mn[xn];
int cal(int s){int ret=; while(s)ret+=(s&),s>>=; return ret;}
void fmt(db *a,int tp)
{
for(int d=;d<bin[n];d<<=)
for(int s=;s<bin[n];s++)
if(s&d)a[s]+=a[s^d]*tp;
}
int main()
{
scanf("%d",&n);
bin[]=; for(int i=;i<=n;i++)bin[i]=(bin[i-]<<);
for(int i=;i<bin[n];i++)
{
scanf("%lf",&p[i]);
if(p[i]){for(int d=;d<n;d++)if(i&bin[d])vis[d]=;}
}
for(int i=;i<n;i++)if(!vis[i]){puts("INF"); return ;}
fmt(p,);
for(int s=;s<bin[n];s++)
if(-p[(bin[n]-)^s]>eps)mn[s]=1.0/(-p[(bin[n]-)^s]);//s=1
db ans=;
for(int s=;s<bin[n];s++)ans+=mn[s]*((cal(s)&)?:-);//s=1
printf("%.10f\n",ans);
return ;
}

bzoj 4036 按位或 —— min-max容斥+FMT的更多相关文章

  1. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  2. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  3. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  4. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  5. P3175-[HAOI2015]按位或【min-max容斥,FWT】

    正题 题目链接:https://www.luogu.com.cn/problem/P3175 题目大意 开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s ...

  6. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  7. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  8. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  9. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

随机推荐

  1. Docker 生态

    Docker 和容器技术的发展可谓是日新月异,本文试图以全局的视角来梳理一下 docker 目前的生态圈.既然是概览,所以不会涉及具体的技术细节. Docker 自从发布以来发生了很多的变化,并且有些 ...

  2. jquery基础 笔记二

    动态创建元素 关于使用HTML DOM创建元素本文不做详细介绍, 下面举一个简单的例子: //使用Dom标准创建元素 var select = document.createElement(" ...

  3. 【51nod-1138】连续整数的和

    本来想着用尺取的思想,不过会超时.利用等差数列S = na+n*n(n-1)/2,得a = (2*S-n*(n-1))/(2*n),然后遍历n,只要满足a是整数就可以,这样复杂度从O(S)变成了O(s ...

  4. 【hdu1005】Number Sequence

    题目描述 一个数列的定义如下: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A和B,你要求出f(n). 输入 输 ...

  5. hdu3488

    题解: 首先把每一个点拆到两边 然后做KM求最大 吧没一条边相反即可 代码: #include<cstdio> #include<cmath> #include<algo ...

  6. Linux下MySQL小尝试

    因为我用的linux机器事先已经装好了mysql,所以安装部门就先忽略. 进入mysql,如果发现没权限的话,使用 mysql -uroot -p 输入密码即可 首先我们使用 create datab ...

  7. SpringInAction-- 配置Profile Bean

    Profile Bean 使用场景描述: 在开发软件的时候,在数据库方面,往往不是一个库就能解决的,一般分为开发库.测试库.生产库,在这些库设置链接的时候,也会配置其对应的数据. 现有一种方式,就是单 ...

  8. Entity Framework技术系列

    http://www.cnblogs.com/yilin/tag/Entity%20Framework/

  9. ASP.NET MVC 中使用用户控件——转

    讲讲怎么在 ASP.NET MVC2中使用用户控件.首先我们新建一个用户控件,   我们命名为SelectGroup.ascx,代码如下 <%@ Control Language="C ...

  10. webpack 事件触发 按需加载

    比较易懂, 方法简单 var util_sync = require('./util-sync.js') alert(util_sync.data) document.getElementById(& ...