【计算机视觉】Object Proposal之BING理解
发现:
本论文主要有两大亮点。第一个亮点是发现了在固定窗口的大小下,物体与背景的梯度模式有所不同。如图1所示。图1(a)中绿框代表背景,红框代表物体。如果把这些框都resize成固定大小,比如8X8,然后求出8X8这些块中每个点的梯度(Normed
Gradient,本文的结果为[0,255],之前看错成Normalized...估计这里的normed就是指窗口都resize成8X8),可以明显看到物体与背景的梯度模式的差别,如图1(c)所示,物体的梯度分布呈现出较为杂乱的模式,而背景的较为单一和清楚。其实这个道理很浅显,就是图像中背景区域往往呈现出homogeneous的特性,早期的图像区域分割方法就是依靠这种特性来做的。然后我个人觉得这里不一定要用梯度,用其他一些统计特征甚至是图像特征都有可能得到类似的结果。
: Binarized Normed Gradients for Objectness Estimation at 300fps 论文笔记" title="BING : Binarized Normed Gradients for Objectness Estimation at 300fps 论文笔记" style="margin:0px;padding:0px;border:0px;list-style:none;">
找到上面的规律就好办了!
首先找一堆训练图像,(作者提供的图片集有许多,九千多张),每一个图片都有目标,并且目标所在的位置都在yml文件中标出来了,这样每一个图片有多个训练样本程序作者放到gtTrainBoxes和
gtTestBoxes(Ground truth bounding boxes for training and testing images)每个训练图像采集若干个窗口并resize到8X8的大小,然后将这些8X8的矩阵向量化得到若干个64维的向量,把这些向量扔进一个线性分类器去训练就ok了:
训练部分:采用级联的SVM 进行的训练。
作者分了两个阶段对训练样训练;
第一个阶段:
【计算机视觉】Object Proposal之BING理解的更多相关文章
- 【计算机视觉】Object Proposal之BING++
本文是对 BING 算法的升级,主要是在快的同时保持定位精度 两个 + 分别对应: edge-based recursive boxes as one "+", and MTSE ...
- 【计算机视觉】detection/region/object proposal 方法综述文章
目录(?)[-] Papers 大纲 各种OP方法的回顾 Grouping proposal methods Window scoring proposal methods Aliternate pr ...
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(理解)
0 - 背景 R-CNN中检测步骤分成很多步骤,fast-RCNN便基于此进行改进,将region proposals的特征提取融合成共享卷积层问题,但是,fast-RCNN仍然采用了selectiv ...
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解
一.创新点和解决的问题 创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search ...
- Object对象你真理解了吗?
前言 五一回家又断更了一个放假时间了~~~ 只有光头才能变强 回顾前面: ThreadLocal就是这么简单 多线程三分钟就可以入个门了! 多线程基础必要知识点!看了学习多线程事半功倍 Java锁机制 ...
- JDK8下Object类源码理解
JDK8中Object类提供的方法: package java.lang; /** * Class {@code Object} is the root of the class hierarchy. ...
- Object.keys()的简单理解
1.对象的话返回属性名 var obj = {'a':'123','b':'345'}; console.log(Object.keys(obj)); //['a','b'] var obj1 = { ...
- RPN(region proposal network)之理解
在faster-r-cnn 中,因为引入rpn层,使得算法速度变快了不少,其实rpn主要作用预测的是 “相对的平移,缩放尺度”,rpn提取出的proposals通常要和anchor box进行拟合回归 ...
- 『计算机视觉』FPN:feature pyramid networks for object detection
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...
随机推荐
- Centos7 安装相关软件
1.安装 wget : yum -y install wget
- java上传超大文件
上周遇到这样一个问题,客户上传高清视频(1G以上)的时候上传失败. 一开始以为是session过期或者文件大小受系统限制,导致的错误.查看了系统的配置文件没有看到文件大小限制,web.xml中sees ...
- 2019 ICPC Asia Yinchuan Regional
目录 Contest Info Solutions A. Girls Band Party B. So Easy D. Easy Problem E. XOR Tree F. Function! G. ...
- spring boot 扫描 其他jar包里面的 mapper xml
启动类配置扫描 goods.mapper为当前项目mapper路径 ,common.mpper为其他jar包. 1. 2.mybatis.mapper-locations=classpath*:map ...
- centos7haproxy+keepalive
1部署keepalived 1.1下载keepalived源码包,并解压# wget http://www.keepalived.org/software/keepalived-1.4.2.tar.g ...
- python踩坑记录篇,持续更新
问题1:python语法错误 错误日志如下: print(a[2]) ^IndentationError: unexpected indent [解决方案]:缩进代码错误导致,将print的缩进 ...
- excel被保护或者锁定时候按住alt和enter可以输入换行
excel被保护或者锁定时候按住alt和enter可以输入换行
- linux shell下去掉windows文件的换行^M
cat filename | tr '\n\r' '\n' > test
- jQuery中ajax如何返回值到上层函数
jQuery中ajax如何返回值到上层函数 一.总结 一句话总结: ajax的同步操作即可,设置 async: false, 二.jquery的同步操作 var can_submit=true; $. ...
- 深度学习: 学习率 (learning rate)
Introduction 学习率 (learning rate),控制 模型的 学习进度 : lr 即 stride (步长) ,即反向传播算法中的 ηη : ωn←ωn−η∂L∂ωnωn←ωn−η∂ ...