直接对每一个格子进行dfs结果除以2能够得到答案可是有大量反复的结果,不好输出答案.

能够仅仅对横纵坐标相加是奇数的格子dfs....

Uncle Tom's Inherited Land*

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 1728    Accepted Submission(s): 723

Special Judge

Problem Description
Your old uncle Tom inherited a piece of land from his great-great-uncle. Originally, the property had been in the shape of a rectangle. A long time ago, however, his great-great-uncle decided to divide the land into a grid of small squares. He turned some of
the squares into ponds, for he loved to hunt ducks and wanted to attract them to his property. (You cannot be sure, for you have not been to the place, but he may have made so many ponds that the land may now consist of several disconnected islands.)



Your uncle Tom wants to sell the inherited land, but local rules now regulate property sales. Your uncle has been informed that, at his great-great-uncle's request, a law has been passed which establishes that property can only be sold in rectangular lots the
size of two squares of your uncle's property. Furthermore, ponds are not salable property.



Your uncle asked your help to determine the largest number of properties he could sell (the remaining squares will become recreational parks). 


 
Input
Input will include several test cases. The first line of a test case contains two integers N and M, representing, respectively, the number of rows and columns of the land (1 <= N, M <= 100). The second line will contain an integer K indicating the number of
squares that have been turned into ponds ( (N x M) - K <= 50). Each of the next K lines contains two integers X and Y describing the position of a square which was turned into a pond (1 <= X <= N and 1 <= Y <= M). The end of input is indicated by N = M = 0.
 
Output
For each test case in the input your program should first output one line, containing an integer p representing the maximum number of properties which can be sold. The next p lines specify each pair of squares which can be sold simultaneity. If there are more
than one solution, anyone is acceptable. there is a blank line after each test case. See sample below for clarification of the output format.
 
Sample Input
4 4
6
1 1
1 4
2 2
4 1
4 2
4 4
4 3
4
4 2
3 2
2 2
3 1
0 0
 
Sample Output
4
(1,2)--(1,3)
(2,1)--(3,1)
(2,3)--(3,3)
(2,4)--(3,4) 3
(1,1)--(2,1)
(1,2)--(1,3)
(2,3)--(3,3)
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <vector> using namespace std; const int dir_x[4]={-1,1,0,0};
const int dir_y[4]={0,0,-1,1}; int mp[120][120];
int n,m,k; bool used[120][120];
int linker[120][120]; bool dfs(int x,int y)
{
for(int i=0;i<4;i++)
{
int X=x+dir_x[i];
int Y=y+dir_y[i];
if(mp[X][Y]==1) continue;
if(X>n||X<1||Y>m||Y<1) continue;
if(used[X][Y]) continue;
used[X][Y]=true;
if(linker[X][Y]==-1||dfs(linker[X][Y]/1000,linker[X][Y]%1000))
{
linker[X][Y]=x*1000+y;
return true;
}
}
return false;
} int hungary()
{
int ret=0;
memset(linker,-1,sizeof(linker));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if((i+j)&1||mp[i][j]==1) continue;
memset(used,false,sizeof(used));
if(dfs(i,j)) ret++;
}
}
return ret;
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&n&&m)
{
scanf("%d",&k);
memset(mp,0,sizeof(mp));
for(int i=0;i<k;i++)
{
int a,b;
scanf("%d%d",&a,&b);
mp[a][b]=1;
}
printf("%d\n",hungary());
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int ii=linker[i][j]/1000; int jj=linker[i][j]%1000;
if(jj!=-1)
printf("(%d,%d)--(%d,%d)\n",i,j,ii,jj);
}
}
}
return 0;
}

HDOJ 1507 Uncle Tom&#39;s Inherited Land*的更多相关文章

  1. ZOJ 1516 Uncle Tom&#39;s Inherited Land(二分匹配 最大匹配 匈牙利啊)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=516 Your old uncle Tom inherited a p ...

  2. hdu1507——Uncle Tom&#39;s Inherited Land*

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. HDU——T 1507 Uncle Tom's Inherited Land*

    http://acm.hdu.edu.cn/showproblem.php?pid=1507 Time Limit: 2000/1000 MS (Java/Others)    Memory Limi ...

  4. HDU 1507 Uncle Tom's Inherited Land*(二分图匹配)

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. Hdu 1507 Uncle Tom's Inherited Land* 分类: Brush Mode 2014-07-30 09:28 112人阅读 评论(0) 收藏

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  6. HDU 1507 Uncle Tom's Inherited Land*(二分匹配,输出任意一组解)

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  7. HDU 1507 Uncle Tom's Inherited Land(最大匹配+分奇偶部分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1507 题目大意:给你一张n*m大小的图,可以将白色正方形凑成1*2的长方形,问你最多可以凑出几块,并输 ...

  8. HDU 1507 Uncle Tom's Inherited Land*

    题目大意:给你一个矩形,然后输入矩形里面池塘的坐标(不能放东西的地方),问可以放的地方中,最多可以放多少块1*2的长方形方块,并输出那些方块的位置. 题解:我们将所有未被覆盖的分为两种,即分为黑白格( ...

  9. hdu-----(1507)Uncle Tom's Inherited Land*(二分匹配)

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. Problem C: 学生的排序

    Problem C: 学生的排序 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 274  Solved: 136[Submit][Status][Web ...

  2. jquery IE6 下animate 动画的opacity无效

    jquery IE6 下animate 动画的opacity无效,其实是有效的,因为IETester的一个小BUG 原生IE6 没问题...呵呵~~

  3. 学python+django去北京找工作,靠谱吗?

    有些朋友说,自己的学习能力还可以.倾向于python加框架,如django,python本来就会一些.不太了解北京公司的情况,想知道现学的python+django在北京找到工作有多少可能性. 要想知 ...

  4. 深入探讨List<>中的一个姿势。

    List<>是c#中很常见的一种集合形式,近期在阅读c#源码时,发现了一个很有意思的定义: [DebuggerTypeProxy(typeof(Mscorlib_CollectionDeb ...

  5. C#三步实现标准事件处理程序

    事件,MSDN解释:类或对象可以通过事件向其他类或对象通知发生的相关事情.发送(或引发)事件的类称为“发行者”,接收(或处理)事件的类称为“订户”. 有关事件的理论与好处,在这里就不再废话了,感兴趣的 ...

  6. [转载] Redis资料汇总专题

    转载自http://www.cnblogs.com/tommyli/archive/2011/12/14/2287614.html 1.Redis是什么? 十五分钟介绍 Redis数据结构 Redis ...

  7. 老男孩Python全栈开发(92天全)视频教程 自学笔记04

    day4课程目录: 逻辑运算符 while循环 day4课程内容梳理: 逻辑运算符 算数运算符:+,-,*,/,%,** 比较运算符:< ,>, ==,<=,>=,!=, 逻辑 ...

  8. [OIDC in Action] 2. 基于OIDC(OpenID Connect)的SSO(纯JS客户端)

    在上一篇基于OIDC的SSO的中涉及到了4个Web站点: oidc-server.dev:利用oidc实现的统一认证和授权中心,SSO站点. oidc-client-hybrid.dev:oidc的一 ...

  9. laravel中with()方法,has()方法和whereHas()方法的区别

    with() with()方法是用作"渴求式加载"的,那主要意味着,laravel将会伴随着主要模型预加载出确切的的关联关系.这就对那些如果你想加在一个模型的所有关联关系非常有帮助 ...

  10. 条件随机场 Conditional Random Fields

    简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...