In two previous blog posts I discussed some techniques for visualizing relationships involving two or three variables and a large number of cases. In this tutorial I will extend that discussion to show some techniques that can be used on large datasets and complex multivariate relationships involving three or more variables.

In this tutorial I will use the R package nmle which contains the dataset MathAchieve. Use the code below to install the package and load it into the R environment:

####################################################
#code for visual large dataset MathAchieve
#first show 3d scatterplot; then show tableplot variations
####################################################
install.packages(“nmle”) #install nmle package
library(nlme) #load the package into the R environment
####################################################

Once the package is installed take a look at the structure of the data set by using:

####################################################
attach(MathAchieve) #take a look at the structure of the dataset
str(MathAchieve)
####################################################

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and ‘data.frame’: 7185 obs. of 6 variables:
$ School : Ord.factor w/ 160 levels “8367”<“8854″<..: 59 59 59 59 59 59 59 59 59 59 …
$ Minority: Factor w/ 2 levels “No”,”Yes”: 1 1 1 1 1 1 1 1 1 1 …
$ Sex : Factor w/ 2 levels “Male”,”Female”: 2 2 1 1 1 1 2 1 2 1 …
$ SES : num -1.528 -0.588 -0.528 -0.668 -0.158 …
$ MathAch : num 5.88 19.71 20.35 8.78 17.9 …
$ MEANSES : num -0.428 -0.428 -0.428 -0.428 -0.428 -0.428 -0.428 -0.428 -0.428 -0.428 …
– attr(*, “formula”)=Class ‘formula’ language MathAch ~ SES | School
.. ..- attr(*, “.Environment”)=<environment: R_GlobalEnv> 
– attr(*, “labels”)=List of 2
..$ y: chr “Mathematics Achievement score”
..$ x: chr “Socio-economic score”
– attr(*, “FUN”)=function (x) 
..- attr(*, “source”)= chr “function (x) max(x, na.rm = TRUE)”
– attr(*, “order.groups”)= logi TRUE
>

As can be seen from the output shown above the MathAchievedataset consists of 7185 observations and six variables. Three of these variables are numeric and three are factors. This presents some difficulties when visualizing the data. With over 7000 cases a two-dimensional scatterplot showing bivariate correlations among the three numeric variables is of limited utility.

We can use a 3D scatterplot and a linear regression model to more clearly visualize and examine relationships among the three numeric variables. The variable SES is a vector measuring socio-economic status, MathAch is a numeric vector measuring mathematics achievment scores, and MEANSES is a vector measuring the mean SESfor the school attended by each student in the sample.

We can look at the correlation matrix of these 3 variables to get a sense of the relationships among the variables:

> ####################################################
> #do a correlation matrix with the 3 numeric vars; 
> ###################################################
> data(“MathAchieve”)
> cor(as.matrix(MathAchieve[c(4,5,6)]), method=”pearson”)

SES MathAch MEANSES
SES 1.0000000 0.3607556 0.5306221
MathAch 0.3607556 1.0000000 0.3437221
MEANSES 0.5306221 0.3437221 1.0000000

In using the cor() function as seen above we can determine the variables used by specifying the column that each numeric variable is in as shown in the output from the str() function.  The 3 numeric variables, for example, are in columns 4, 5, and 6 of the matrix.

As discussed in previous tutorials we can visualize the relationship among these three variable by using a 3D scatterplot. Use the code as seen below:

####################################################
#install.packages(“nlme”)
install.packages(“scatterplot3d”)
library(scatterplot3d)
library(nlme) #load nmle package
attach(MathAchieve) #MathAchive dataset is in environment
scatterplot3d(SES, MEANSES, MathAch, main=”Basic 3D Scatterplot”) #do the plot with default options
####################################################

The resulting plot is:

Even though the scatter plot lacks detail due to the large sample size it is still possible to see the moderate correlations shown in the correlation matrix by noting the shape and direction of the data points  .  A regression plane can be calculated and added to the plot using the following code:

scatterplot3d(SES, MEANSES, MathAch, main=”Basic 3D Scatterplot”) #do the plot with default options
####################################################
##use a linear regression model to plot a regression plane
#y=MathAchieve, SES, MEANSES are predictor variables
####################################################
model1=lm(MathAch ~ SES + MEANSES)    ## generate a regression
#take a look at the regression output
summary(model1)
#run scatterplot again putting results in model
model <- scatterplot3d(SES, MEANSES, MathAch, main=”Basic 3D Scatterplot”)     #do the plot with default options
#link the scatterplot and linear model using the plane3d function
model$plane3d(model1)        ## link the 3d scatterplot in ‘model’ to the ‘plane3d’ option with ‘model1’ regression information
####################################################

The resulting output is seen below:

Call:
lm(formula = MathAch ~ SES + MEANSES)

Residuals:
Min 1Q Median 3Q Max 
-20.4242 -4.6365 0.1403 4.8534 17.0496

Coefficients:
Estimate Std. Error t value Pr(>|t|) 
(Intercept) 12.72590 0.07429 171.31 <2e-16 ***
SES 2.19115 0.11244 19.49 <2e-16 ***
MEANSES 3.52571 0.21190 16.64 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.296 on 7182 degrees of freedom
Multiple R-squared: 0.1624, Adjusted R-squared: 0.1622 
F-statistic: 696.4 on 2 and 7182 DF, p-value: < 2.2e-16

and the plot with the plane is:

While the above analysis gives us useful information, it is limited by the mixture of numeric values and factors.  A more detailed visual analysis that will allow the display and comparison of all six of the variables is possible by using the functions available in the R packageTableplots.   This package was created to aid in the visualization and inspection of large datasets with multiple variables.

The MathAchieve contains a total of six variables and 7185 cases.  TheTableplots package can be used with datasets larger than 10,000 observations and up to 12 or so variables. It can be used visualize relationships among variables using the same measurement scale or mixed measurement types.

To look at a comparisons of each data type and then view all 6 together begin with the following:

####################################################
attach(MathAchieve) #attach the dataset
#set up 3 data frames with numeric, factors, and mixed
####################################################
mathmix <- data.frame(SES,MathAch,MEANSES,School=factor(School),Minority=factor(Minority),Sex=factor(Sex)) #all 6 vars
mathfact <- data.frame(School=factor(School),Minority=factor(Minority),Sex=factor(Sex)) #3 factor vars
mathnum <- data.frame(SES,MathAch,MEANSES) #3 numeric vars
####################################################

To view a comparison of the 3 numeric variables use:

####################################################
require(tabplot) #load tabplot package
tableplot(mathnum) #generate a table plot with numeric vars only
####################################################

resulting in the following output:

To view only the 3 factor variables use:

####################################################
require(tabplot)   #load tabplot package
tableplot(mathfact)    #generate a table plot with factors only
####################################################

Resulting in:

To view and compare table plots of all six variables use:

####################################################
require(tabplot)    #load tabplot package
tableplot(mathmix)    #generate a table plot with all six variables
####################################################

Resulting in:

Using tableplots is useful in visualizing relationships among a set of variabes. The fact that comparisons can be made using mixed levels of measurement and very large sample sizes provides a tool that the researcher can use for initial exploratory data analysis.

The above visual table comparisons agree with the moderate correlation among the three numeric variables found in the correlation and regression models discussed above.  It is also possible to add some additional interpretation by viewing and comparing the mix of both factor and numeric variables.

In this tutorial I have provided a very basic introduction to the use of table plots in visualizing data. Interested readers can find an abundance of information about Tableplot options and interpretations in the CRAN documentation.

In my next tutorial I will continue a discussion of methods to visualize large and complex datasets by looking at some techniques that allow exploration of very large datasets and up to 12 variables or more.

转自:https://dmwiig.net/2017/02/06/r-tutorial-visualizing-multivariate-relationships-in-large-datasets/

R TUTORIAL: VISUALIZING MULTIVARIATE RELATIONSHIPS IN LARGE DATASETS的更多相关文章

  1. THE R QGRAPH PACKAGE: USING R TO VISUALIZE COMPLEX RELATIONSHIPS AMONG VARIABLES IN A LARGE DATASET, PART ONE

    The R qgraph Package: Using R to Visualize Complex Relationships Among Variables in a Large Dataset, ...

  2. Factoextra R Package: Easy Multivariate Data Analyses and Elegant Visualization

    factoextra is an R package making easy to extract and visualize the output of exploratory multivaria ...

  3. R tutorial

    http://www.clemson.edu/economics/faculty/wilson/R-tutorial/Introduction.html https://www.youtube.com ...

  4. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  5. How-to go parallel in R – basics + tips(转)

    Today is a good day to start parallelizing your code. I’ve been using the parallel package since its ...

  6. The leaflet package for online mapping in R(转)

    It has been possible for some years to launch a web map from within R. A number of packages for doin ...

  7. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)

    ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...

  8. A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)

    文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...

  9. 多组学分析及可视化R包

    最近打算开始写一个多组学(包括宏基因组/16S/转录组/蛋白组/代谢组)关联分析的R包,避免重复造轮子,在开始之前随便在网上调研了下目前已有的R包工具,部分罗列如下: 1. mixOmics 应该是在 ...

随机推荐

  1. windows编程初步

    #include <windows.h> const char g_szClassName[] = "myWindowClass"; LRESULT CALLBACK ...

  2. Html 经典布局(三)

    经典布局案例(三): <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  3. IOS——触摸事件 视图检测和事件传递

    iPhone上有非常流畅的用户触摸交互体验,能检测各种手势:点击,滑动,放大缩小,旋转.大多数情况都是用UI*GestureRecognizer这样的手势对象来关联手势事件和手势处理函数.也有时候,会 ...

  4. 深入理解MVC

    首先我们来看看MVC架构的示意图:             和访问者交互的是控制层(Controller层),控制器(controller)是同类交互的集合,每一个交互的操作,都对应了一个动作(act ...

  5. CF Educational Codeforces Round 10 D. Nested Segments 离散化+树状数组

    题目链接:http://codeforces.com/problemset/problem/652/D 大意:给若干个线段,保证线段端点不重合,问每个线段内部包含了多少个线段. 方法是对所有线段的端点 ...

  6. rapidPHP 1.1.0 介绍

    RapidPHP介绍 RapidPHP本着免费开源.快速.高效.简单的面向对象的 轻量级PHP开发框架. 版本: 1.1.0 官网: rapidPHP.gx521.cc 作者: 954418992@q ...

  7. Java中的多线程Demo

    一.关于Java多线程中的一些概念 1.1 线程基本概念 从JDK1.5开始,Java提供了3中方式来创建.启动多线程: 方式一(不推荐).通过继承Thread类来创建线程类,重写run()方法作为线 ...

  8. Linux系统操作指令汇总

    1.系统配置 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIO ...

  9. Vue 项目实战系列 (一)

    最近一直在学习Vue,基本的文档看完后就需要进行具体的项目进行练手了,本系列文章主要是将我学习过程记录下来,和大家一起学习交流. 我在git上找到了一个淘票票的Vue项目,项目地址: https:// ...

  10. 《分布式Java应用之基础与实践》读书笔记三

    对于大型分布式Java应用与SOA,我们可以从以下几个方面来分析: 为什么需要SOA SOA是什么 eBay的SOA平台 可实现SOA的方法 为什么需要SOA   第一个现象是系统多元化带来的问题,可 ...