题解 有标号DAG计数
题目大意
给出\(n\),求出对于任意\(t\in[1,n]\),点数为\(t\)的弱联通\(\texttt{DAG}\)个数。答案对\(998244353\)取模。
\(n\le 10^5\)
思路
看到\(\texttt{Karry5307}\)的题解里面有很多小问题(但这并不影响\(\texttt {Karry AK IOI}\)),这里给一篇可能没有什么错误的题解。
我们发现直接求似乎不是很好求,我们发现弱连通图组合在一起的话,就相当于一个不保证联通的\(\texttt{DAG}\),于是我们的目标就是如何求出不保证联通性的\(\texttt{DAG}\)的个数。
我们设\(g_n\)为有\(n\)个点的不保证联通的\(\texttt{DAG}\)的个数,我们可以得到转移式:
\]
这个式子的意思就是,我们可以先选\(i\)个点入入度为\(0\),然后其余的点构成\(\texttt{DAG}\),这两部分之间的边随便连不连都能满足条件。但是我们并不能恰好有\(i\)个点入度为\(0\),我们只能保证至少有\(i\)个点入度为\(0\),所以我们就需要容斥一下。
我们发现这个式子中最难看的就是\(2^{i(n-i)}\),而我们发现这个可以用\(\texttt{Bluestein}\)拆成\(\frac{(\sqrt{2})^{n^2}}{(\sqrt{2})^{i^2}(\sqrt{2})^{(n-i)^2}}\),当然如果你喜欢的话你也可以拆成:\(\frac{2^{\binom{n}{2}}}{2^{\binom{i}{2}}2^{\binom{n-i}{2}}}\)。我用的是第一种拆成平方的方法。
于是,式子就变成了:
\]
而我们又有:
\]
所以我们暂时还没有碰到什么困难。
我们发现我们如果设:
\]
\]
我们就可以得到:
\]
这个代一下就可以得到了。
于是,我们就得到:
\]
于是,我们就可以求到\(g_i\)了。我们考虑弱连通图和不保证连通性的\(\texttt{DAG}\)之间的关系。我们发现,其实不保证连通性的\(\texttt{DAG}\)就是把一堆弱连通图揉成一坨,于是,如果我们设\(F(x)\)为\(\{g_{0,1,2,...,n}\}\)的指数生成函数,那么,弱连通图的指数型生成函数就是:
\]
于是,我们就在\(\Theta(n\log n)\)的时间复杂度内解决了这个问题。
\(\text {Code}\)
#include <bits/stdc++.h>
using namespace std;
#define SZ(x) ((int)x.size())
#define Int register int
#define sqr2 116195171
#define mod 998244353
#define MAXN 1000005
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int k){
int res = 1;for (;k;k >>= 1,a = 1ll * a * a % mod) if (k & 1) res = 1ll * res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);}
typedef vector <int> poly;
int rev[MAXN];
void ntt (poly &f,int lim,int type){
#define G 3
#define Gi 332748118
int l = log2 (lim);
for (Int i = 0;i < lim;++ i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << l - 1);
for (Int i = 0;i < lim;++ i) if (i < rev[i]) swap (f[i],f[rev[i]]);
for (Int i = 1;i < lim;i <<= 1){
int Wn = qkpow (type == 1 ? G : Gi,(mod - 1) / (i << 1));
for (Int j = 0;j < lim;j += i << 1)
for (Int k = 0,w = 1;k < i;++ k,w = 1ll * w * Wn % mod){
int x = f[j + k],y = 1ll * w * f[i + j + k] % mod;
f[j + k] = (x + y) % mod,f[i + j + k] = (x + mod - y) % mod;
}
}
if (type == 1) return ;
for (Int i = 0,Inv = inv (lim);i < lim;++ i) f[i] = 1ll * f[i] * Inv % mod;
#undef G
#undef Gi
}
poly operator + (poly a,poly b){
a.resize (max (SZ (a),SZ (b)));
for (Int i = 0;i < SZ (b);++ i) a[i] = add (a[i],b[i]);
return a;
}
poly operator - (poly a,poly b){
a.resize (max (SZ (a),SZ (b)));
for (Int i = 0;i < SZ (b);++ i) a[i] = dec (a[i],b[i]);
return a;
}
poly operator * (poly a,int b){
for (Int i = 0;i < SZ (a);++ i) a[i] = mul (a[i],b);
return a;
}
poly operator * (poly a,poly b){
int d = SZ (a) + SZ (b) - 1,lim = 1;while (lim < d) lim <<= 1;
a.resize (lim),b.resize (lim);
ntt (a,lim,1),ntt (b,lim,1);
for (Int i = 0;i < lim;++ i) a[i] = mul (a[i],b[i]);
ntt (a,lim,-1),a.resize (d);
return a;
}
poly operator << (poly a,int n){
a.resize (SZ (a) + n);
for (Int i = SZ (a) - 1;~i;-- i) a[i] = (i >= n ? a[i - n] : 0);
return a;
}
poly inv (poly a,int n){
poly b(1,inv (a[0])),c;
for (Int l = 4;(l >> 2) < n;l <<= 1){
c.resize (l >> 1);
for (Int i = 0;i < (l >> 1);++ i) c[i] = i < n ? a[i] : 0;
c.resize (l),b.resize (l);
ntt (c,l,1),ntt (b,l,1);
for (Int i = 0;i < l;++ i) b[i] = mul (b[i],dec (2,mul (b[i],c[i])));
ntt (b,l,-1),b.resize (l >> 1);
}
b.resize (n);
return b;
}
poly inv (poly a){return inv (a,SZ (a));}
poly der (poly a){
for (Int i = 0;i < SZ (a) - 1;++ i) a[i] = mul (a[i + 1],i + 1);
a.pop_back ();return a;
}
poly ine (poly a){
a.push_back (0);
for (Int i = SZ (a) - 1;i;-- i) a[i] = mul (a[i - 1],inv (i));
a[0] = 0;return a;
}
poly ln (poly a,int n){
a = ine (der (a) * inv (a));
a.resize (n);
return a;
}
poly ln (poly a){return ln (a,SZ (a));}
poly exp (poly a,int n){
poly b (1,1),c;
for (Int l = 2;(l >> 1) < n;l <<= 1){
b.resize (l),c = ln (b);
for (Int i = 0;i < l;++ i) c[i] = dec (i < n ? a[i] : 0,c[i]);
c[0] = add (c[0],1);
b = b * c,b.resize (l);
}
b.resize (n);
return b;
}
poly exp (poly a){return exp (a,SZ (a));}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
poly H;
int n,fac[MAXN],ifac[MAXN];
signed main(){
read (n);
fac[0] = 1;for (Int i = 1;i <= n;++ i) fac[i] = mul (fac[i - 1],i);
ifac[n] = inv (fac[n]);for (Int i = n;i;-- i) ifac[i - 1] = mul (ifac[i],i);
H.resize (n + 1);for (Int i = 1;i <= n;++ i) H[i] = inv (mul (fac[i],qkpow (sqr2,1ll * i * i % (mod - 1)))),H[i] = i & 1 ? mod - H[i] : H[i];
H[0] = 1,H = inv (H);for (Int i = 0;i <= n;++ i) H[i] = mul (H[i],qkpow (sqr2,1ll * i * i % (mod - 1)));H = ln (H);
for (Int i = 1;i <= n;++ i) write (mul (H[i],fac[i])),putchar ('\n');
return 0;
}
一个小小的总结
其实做了几道多项式与图计数的题目之后可以发现,对于一些不是很好求到的答案我们采用的办法就是把所求多项式与更好求的图的多项式建立关系,从而反推出该图的生成函数。反推的方法就不计其数了。
题解 有标号DAG计数的更多相关文章
- 有标号DAG计数(生成函数)
有标号DAG计数(生成函数) luogu 题解时间 首先考虑暴力,很容易得出 $ f[ i ] = \sum\limits_{ j = 1 }^{ i } ( -1 )^{ j - 1 } \bino ...
- 有标号DAG计数 [容斥原理 子集反演 组合数学 fft]
有标号DAG计数 题目在COGS上 [HZOI 2015]有标号的DAG计数 I [HZOI 2015] 有标号的DAG计数 II [HZOI 2015]有标号的DAG计数 III I 求n个点的DA ...
- P6295 有标号 DAG 计数
P6295 有标号 DAG 计数 题意 求 \(n\) 个点有标号弱联通 DAG 数量. 推导 设 \(f_i\) 表示 \(i\) 个点有标号 DAG 数量(不保证弱联通),有: \[f(i)=\s ...
- 洛谷 P6295 - 有标号 DAG 计数(生成函数+容斥+NTT)
洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n ...
- P6295-有标号 DAG 计数【多项式求逆,多项式ln】
正题 题目链接:https://www.luogu.com.cn/problem/P6295 题目大意 求所有\(n\)个点的弱联通\(DAG\)数量. \(1\leq n\leq 10^5\) 解题 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
随机推荐
- Linux中MySQL的安装以及卸载
一.MySQL MySQL是一种开放源代码的关系型数据库管理系统,开发者为瑞典MySQL AB公司.在2008年1月16号被Sun公司收购.而2009年,SUN又被Oracle收购.目前 MySQL被 ...
- nios eclipse提示LED_PIO_BASE没有声明,怎么回事?
这是因为名字不一致引起的比如,在生成SOPC系统时,双击PIO(Parallel I/O)(在Avalon Modules -> Other 下),为系统添加输出接口,你没有把该组件改名成LED ...
- Linux学习笔记 - Linux快捷操作及常用命令
一.快捷键 剪切光标前的内容 Ctrl + u 剪切光标至行末的内容 Ctrl + k 粘贴 Ctrl + u 或 Ctrl +k 的内容 Ctrl + y 移动光标到行末 Ctrl + e 移动光标 ...
- Linux复习笔记-001-进程的管理
1.什么是进程? 进程是已经启动的可执行的程序运行实例. 程序是二进制文件,静态 ./bin/date/ /usr/sbin/ 进程:是程序运行的过程 2.Linux为1的进程? centos5或6为 ...
- Spring(一)——概述
一.概述 1.介绍 struts 是 web 框架 (jsp/action/actionfrom).hibernate是orm (Object Relational Mapping) 框架,处于持久层 ...
- noip模拟42
A. 卷 发现乘积足以爆 \(long\) \(long\),但是数据随机,可以略忽略精度问题 一个快速降低数的级别的方法是取对数,由于有性质 \(log(x * y)=logx+logy\),合并时 ...
- AntDesign VUE:上传组件图片/视频宽高、文件大小、image/video/pdf文件类型等限制(Promise、Boolean)
文件大小限制 - Promise checkFileSize(file, rules) { return new Promise((resolve, reject) => { file.size ...
- python模块--calendar
方法 返回值类型 说明 .calendar(theyear, w=2, l=1, c=6, m=3) str 返回指定年份的年历, w: 每个日期的宽度, l: 每一行的纵向宽度, c: 月与月之间的 ...
- python语言介绍及安装
Python语言简介 Python是什么语言 Python是一种解释型的.可移植的.开源的脚本. 什么是计算机编程 计算机程序:为了让计算机执行某些操作或解决某个问题而编写的一系列有序指令的集合 如何 ...
- PHP没有定时器?
确实,PHP没有类似于JS中的setInterval或者setTimeout这样的原生定时器相关的函数.但是我们可以通过其他方式来实现,比如使用declare. 先来看看是如何实现的,然后我们再好好学 ...