(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\bf A}$ 可逆, 则 $|{\bf A}^2-{\bf B}|>0$.

证明: 由 ${\bf A}^T=-{\bf A}$ 知 $$\bex |{\bf A}|=|{\bf A}^T|=(-1)^n |{\bf A}|. \eex$$ 故 $n$ 为偶数 (否则, $|{\bf A}|=0$, ${\bf A}$ 不可逆). 又 ${\bf A}$ 可逆, ${\bf A}^T{\bf A}$ 正定, 而存在可逆阵 ${\bf P}$, 使得 ${\bf P}^T{\bf A}^T{\bf A}{\bf P}={\bf E}$. 于是 $$\beex \bea |{\bf P}^T|\cdot|{\bf A}^2-{\bf B}|\cdot|{\bf P}| &=|{\bf P}^T|\cdot|-{\bf A}^T{\bf A}-{\bf B}|\cdot|{\bf P}|\\ &=|{\bf P}^T|\cdot|{\bf A}^T{\bf A}+{\bf B}|\cdot|{\bf P}|\quad\sex{n\mbox{ 为偶数}}\\ &=|{\bf E}+{\bf P}^T{\bf B}{\bf P}|. \eea \eeex$$ 既然 ${\bf P}^T{\bf B}{\bf P}$ 也是反对称矩阵, 而存在正交阵 ${\bf Q}$, 使得 (参考文献) $$\bex {\bf Q}^T{\bf P}^T{\bf B}{\bf P}{\bf Q} =\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea},\quad{\bf D}=\sex{\ba{cc} 0&1\\ -1&0 \ea}. \eex$$ 于是 $$\beex \bea |{\bf Q}^T\cdot{\bf P}^T|\cdot|{\bf A}^2-{\bf B}|\cdot|{\bf P}\cdot{\bf Q}| &=\sev{{\bf E}+\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea}}\\ &=2^r\quad\sex{r\mbox{ 为 }\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea}\mbox{ 中 }{\bf D}\mbox{ 的个数}}\\ &>0. \eea \eeex$$

关于反对称矩阵, 这里有更多的资料.

[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)的更多相关文章

  1. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  2. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  3. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  4. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  5. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  6. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  7. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  8. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. 我的第一个python web开发框架(29)——定制ORM(五)

    接下来我们要封装的是修改记录模块. 先上产品信息编辑接口代码 @put('/api/product/<id:int>/') def callback(id): ""&q ...

  2. windows环境:idea或者eclipse指定用户名操作hadoop集群

    方法 在系统的环境变量或java JVM变量添加HADOOP_USER_NAME(具体值视情况而定). 比如:idea里面可以如下添加HADOOP_USER_NAME=hdfs 原理:直接看源码 /h ...

  3. (转)Cesium教程系列汇总

    https://www.cnblogs.com/fuckgiser/p/5706842.html Cesium系列目录: 演示实例 ExamplesforCesium 最近老实有一些人问我,下载后在本 ...

  4. SDOI 2019 R1游记

    $SDOI$ $2019$ $R1$游记 昨天才刚回来,今天就来写游记啦! Day -5: 做了一下去年省选的Day1,感觉很神仙. Day -4: 做了一下去年省选的Day2,感觉还是很神仙. Da ...

  5. Jetson TX2(3)opencv3 打开usb摄像头

    ubuntu2604 opencv3.4.0 https://blog.csdn.net/ultimate1212/article/details/80936175?utm_source=blogxg ...

  6. Spring boot整合Mybatis

    时隔两个月的再来写博客的感觉怎么样呢,只能用“棒”来形容了.闲话少说,直接入正题,之前的博客中有说过,将spring与mybatis整个后开发会更爽,基于现在springboot已经成为整个业界开发主 ...

  7. Golang 入门系列(十) mysql数据库的使用

    之前,已经讲过一些Golang的基础的东西,感兴趣的可以看看以前的文章,https://www.cnblogs.com/zhangweizhong/category/1275863.html, 今天简 ...

  8. 使用Dapper.Contrib 开发.net core程序,兼容多种数据库

    关于Dapper的介绍,我想很多人都对它有一定的了解,这个类似一个轻型的ORM框架是目前应用非常火的一个东西,据说各方面的性能都不错,而且可以支持多种数据库,在开始介绍这个文章之前,我花了不少功夫来学 ...

  9. Linux使用百度云

    导读 百度云没有Linux客户端,于是有大神用Go语言写出来一个叫BaiduPCS-Go的命令行盘客户端,可以通过终端操作百度云盘,在Linux上实现上传下载.但是因为是命令行版本的,对没有命令行使用 ...

  10. MySQL与MongoDB

    MySQL        MongoDB DB DB table Collections row  Documents column    Field 增 db.tables.insert({})#效 ...