(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\bf A}$ 可逆, 则 $|{\bf A}^2-{\bf B}|>0$.

证明: 由 ${\bf A}^T=-{\bf A}$ 知 $$\bex |{\bf A}|=|{\bf A}^T|=(-1)^n |{\bf A}|. \eex$$ 故 $n$ 为偶数 (否则, $|{\bf A}|=0$, ${\bf A}$ 不可逆). 又 ${\bf A}$ 可逆, ${\bf A}^T{\bf A}$ 正定, 而存在可逆阵 ${\bf P}$, 使得 ${\bf P}^T{\bf A}^T{\bf A}{\bf P}={\bf E}$. 于是 $$\beex \bea |{\bf P}^T|\cdot|{\bf A}^2-{\bf B}|\cdot|{\bf P}| &=|{\bf P}^T|\cdot|-{\bf A}^T{\bf A}-{\bf B}|\cdot|{\bf P}|\\ &=|{\bf P}^T|\cdot|{\bf A}^T{\bf A}+{\bf B}|\cdot|{\bf P}|\quad\sex{n\mbox{ 为偶数}}\\ &=|{\bf E}+{\bf P}^T{\bf B}{\bf P}|. \eea \eeex$$ 既然 ${\bf P}^T{\bf B}{\bf P}$ 也是反对称矩阵, 而存在正交阵 ${\bf Q}$, 使得 (参考文献) $$\bex {\bf Q}^T{\bf P}^T{\bf B}{\bf P}{\bf Q} =\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea},\quad{\bf D}=\sex{\ba{cc} 0&1\\ -1&0 \ea}. \eex$$ 于是 $$\beex \bea |{\bf Q}^T\cdot{\bf P}^T|\cdot|{\bf A}^2-{\bf B}|\cdot|{\bf P}\cdot{\bf Q}| &=\sev{{\bf E}+\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea}}\\ &=2^r\quad\sex{r\mbox{ 为 }\sex{\ba{cccc} {\bf D}&&&\\ &\ddots&&\\ &&{\bf D}&\\ &&&{\bf 0} \ea}\mbox{ 中 }{\bf D}\mbox{ 的个数}}\\ &>0. \eea \eeex$$

关于反对称矩阵, 这里有更多的资料.

[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)的更多相关文章

  1. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  2. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  3. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  4. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  5. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  6. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  7. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  8. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. Ubuntu18.04 安装jdk1.8

    1.oracle官网下载压缩包,点击链接. 2.解压 1 tar -zxvf jdk-8u171-linux-x64.tar.gz 3.移动到制定目录 ##将文件从下载目录 挪到/usr/local下 ...

  2. 面向对象_内置函数 property

    property 将方法伪装成为属性,可以不用加上()就可以调出其属性. 但是用__dict__,不能调出此属性 from math import pi class Circle: def __ini ...

  3. Python进程池Pool

    ''' 进程池,启动一个进程就要克隆一份数据,假设父进程1G,那么启动进程开销很大 避免启动太多造成系统瘫痪,就有进程池,即同一时间允许的进程数量 ps:线程没有池,因为线程启动开销小,线程有类似信号 ...

  4. 正益移动推出新产品正益工作 实现PaaS+SaaS新组合

    近期,正益移动不仅将其AppCan 移动平台云化,还通过发布全新 SaaS 产品 -- 正益工作,这款集合了企业信息聚合.应用聚合.社交聚合为一体的企业移动综合门户,与 AppCan 平台一起实现了P ...

  5. springboot在eclipse中运行使用开发配置,打包后运行使用生产环境默认配置

    java命令运行springboot jar文件,指定配置文件可使用如下两个参数中其中一个 --spring.config.location=配置文件路径 -Dspring.profiles.acti ...

  6. KeyError: 'Spider not found: test'

    Error Msg: File "c:\python36\lib\site-packages\scrapy\cmdline.py", line 157, in _run_comma ...

  7. 646. Maximum Length of Pair Chain(medium)

    You are given n pairs of numbers. In every pair, the first number is always smaller than the second ...

  8. 新Chrome浏览器不支持html5的问题

    window.applicationCache事件,最新chrome浏览器已经不能判断是否支持html5: 之前,在IE和Google中 为ApplicationCache对象,而在FF中为 Offl ...

  9. spl_autoload_register()怎样注册多个自动加载函数?

    <?php /*function __autoload($class){ require("./class/".$class.".php"); }*/ f ...

  10. centos7之关于时间和日期以及时间同步的应用

    在CentOS 6版本,时间设置有date.hwclock命令,从CentOS 7开始,使用了一个新的命令timedatectl. 基本概念: 一.GMT.UTC.CST.DST 时间 UTC 整个地 ...