Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化。pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。

安装

pip install pyecharts

一、柱形图(条形图)

  柱形图简明、醒目,是一种常用的统计图形。以下生成的图都可以点击 html 文件打开,点击图形右边下载按钮可以下载到本地。

from pyecharts import Bar

bar = Bar("成绩柱形图", "副标题")
# 用于添加图表的数据和设置各种配置项
# is_more_utils=True可以按右边的下载按钮将图片下载到本地 bar.add("成绩表", ["语文", "数学", "英语", "物理", "化学", "生物"], [88, 90, 92, 87, 83, 81], is_more_utils=True)
bar.show_config() # 打印输出图表的所有配置项
bar.render('bar.html') # 在指定目录下生成一个 bar.html 的文件

二、饼图

饼图英文学名为 Sector Graph, 又名 Pie Graph,常用于统计学模块。 
from pyecharts import Pie

attr = ["语文", "数学", "英语", "物理", "化学", "生物"]
score = [20, 30, 40, 25, 10, 15]
pie = Pie('图书销量饼图')
pie.add('', attr, score, is_label_show=True)
pie.render('pie.html')

  

三、圆环图

仅排列在工作表的列或行中的数据可以绘制到圆环图中。
from pyecharts import Pie

attr = ["语文", "数学", "英语", "物理", "化学", "生物"]
score = [20, 30, 40, 25, 10, 15]
pie = Pie('图书销量圆环图', title_pos='center')
pie.add('', attr, score, radius=[40, 75], label_text_color=None, is_label_show=True,
legend_orient='vertical', legend_pos='left')
pie.render('pieround.html') # 在指定目录下生成文件

  

四、3d散点图

散点图是指在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,
据此可以选择合适的函数对数据点进行拟合。
from pyecharts import Scatter3D
from pyecharts import Page
import random page = Page()
data = [[random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)] for _ in range(80)]
range_color = ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',
'#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
scatter3D = Scatter3D("3D 散点图示例", width=1200, height=600)
scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color)
page.add(scatter3D)
page.render('scatter.html') # 在指定目录下生成文件

  

五、3d折线图

折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。
from pyecharts import Line3D

data = [[1, 2, 3, 4], [1, 2, 3, 4], [0, 4, 8, 16]]
Line3D = Line3D("3D 折线图示例", width=1200, height=600)
Line3D.add("", data, is_visualmap=True)
Line3D.render('3D折线图.html') # 在指定目录下生成文件

 

六、仪表盘

仪表盘图的效果如下图所示,图中指针指向的位置是当前的数值。
from pyecharts import Gauge

gauge = Gauge('项目完成进度')
gauge.add('进度表', '完成率', 88.88)
gauge.render('gauge.html') # 在指定目录下生成文件

七、漏斗图

漏斗图这种方法起源于作业管理领域。 
from pyecharts import Funnel

attr = ['认知', '了解', '认可', '考虑', '意向', '购买']
value = [120, 100, 80, 60, 40, 20]
funnel = Funnel('客户购买分析图')
funnel.add('买车', attr, value, is_label_show=True, label_pos='inside', label_text_color='#fff')
funnel.render('funnel.html') # 在指定目录下生成文件

 

八、地图

from pyecharts import Geo

data = [
("上海", 25), ("北京", 36), ("武汉", 23), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15),
("赤峰", 16), ("青岛", 18), ("乳山", 18), ("金昌", 19), ("泉州", 21), ("莱西", 21),
("日照", 21), ("胶南", 22), ("南通", 23), ("拉萨", 24), ("云浮", 24), ("梅州", 25)]
geo = Geo('主要城市空气质量', 'PM2.5', title_color='#fff', title_pos='center',
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add('', attr, value, visual_range=[0, 200], visual_text_color='#fff', symbol_size=15,
is_visualmap=True, is_piecewise=True, visual_split_number=6)
geo.render('geo.html') # 在指定目录下生成文件

九、词云图

我们以 IEEE Spectrum 发布的 2018 年度顶级编程语言排行榜作为数据来制作词云图。
from pyecharts import WordCloud

language = ['Python', 'C++', 'C', 'Java', 'C#', 'PHP', 'R', 'JavaScript', 'Go', 'Assembly']
rank = [100, 98.4, 98.2, 97.5, 89.8, 85.4, 83.3, 82.8, 76.7, 74.5]
wordcloud = WordCloud(width=1500, height=700)
wordcloud.add('', language, rank, word_size_range=[20, 100])
wordcloud.render('worldcloud.html') # 在指定目录下生成文件

  

十、水球图

水球图是一种适合于展现单个百分比数据的图表类型。
from pyecharts import Liquid

liquid = Liquid("水球图")
liquid.add("Liquid", [0.8])
liquid.show_config()
liquid.render('liquid.html') # 在指定目录下生成文件

 

更多使用详情请关注 http://pyecharts.org

数据可视化之pyecharts的更多相关文章

  1. 【python可视化系列】python数据可视化利器--pyecharts

    学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...

  2. python数据可视化:pyecharts

    发现了一个做数据可视化非常好的库:pyecharts.非常便捷好用,大力推荐!! 官方介绍:pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 ...

  3. Python:数据可视化pyecharts的使用

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生 ...

  4. 如何使用Python快速制作可视化报表----pyecharts

    如何使用Python快速制作可视化报表   数据可视化能力已经越来越成为各岗位的基础技能.领英的数据报告显示,数据可视化技能在2017年中国最热门技能中排名第一. 就数据分析而言,可视化探索几乎是你正 ...

  5. 【PyQt5-Qt Designer】PyQt5+pyecharts 实现GUI界面的数据可视化展示

    先用纯Python代码写一个简单的小案例: from PyQt5.QtCore import QUrl from PyQt5.QtWidgets import QApplication,QWidget ...

  6. Python3:pyecharts数据可视化插件

    Python3:pyecharts数据可视化插件 一.简介 pyecharts 是一个用于生成 Echarts 图表的类库. Echarts 是百度开源的一个数据可视化 JS 库.主要用于数据可视化. ...

  7. python的数据可视化库 matplotlib 和 pyecharts

    Matplotlib大家都很熟悉    不谈. ---------------------------------------------------------------------------- ...

  8. Flsk&pyecharts 动态数据可视化

    1:数据源 Hollywood Movie Dataset: 好莱坞2006-2011数据集  实验目的: 实现 统计2006-2011的数据综合统计情况,进行数据可视化 gitee地址: https ...

  9. 爬取疫情数据,以django+pyecharts实现数据可视化web网页

    在家呆着也是呆着,不如做点什么消磨时间呗~ 试试用django+pyecharts实现疫情数据可视化web页面 这里要爬疫情数据 来自丁香园.搜狗及百度的疫情实时动态展示页 先看看劳动成果: 导航栏: ...

随机推荐

  1. Linux学习历程——Centos 7 grep命令

    一.命令简介 grep 命令用于在文本中执行关键词搜索,并显示匹配的结果. 由于grep命令参数很多,这里只列出一些常用的参数. 参数 作用 -b 将可执行文件当作文本文件来搜索 -c 仅显示找到的行 ...

  2. Linux DNS服务配置

    主.从域名服务器配置 一.实验环境 主域名服务器:ns1.topsec.com,192.168.120.119 从域名服务器:ns2.topsec.com,192.168.120.120 二.实验步骤 ...

  3. Go语言学习笔记-流程控制(二)

    Go语言流程控制 字典类型Map 1.上节遗留:map字典类型 变量声明:var myMap map[string] PersonInfo 其中,myMap是变量名,string是键的类型,Perso ...

  4. sqlserver日期函数大全

    一,统计语句 1, - 统计当前[>当天00点以后的数据] SELECT * FROM 表 WHERE CONVERT(Nvarchar, dateandtime, 111) = CONVERT ...

  5. python 之 查找某目录中最新的文件

    记录一下这个方法,感觉很有用!>.< import os def find_newest_file(path_file): lists = os.listdir(path_file) li ...

  6. insert into select的实际用法

    INSERT INTO SELECT语句 语句形式为:Insert into Table2(field1,field2,...) select value1,value2,... from Table ...

  7. oc中的委托模式

    通过一个例子来理解委托模式 首先定义个协议 协议(protocol) :它可以声明一些必须实现的方法和选择实现的方法  (在java中称为接口) // // StudentDelegate.h // ...

  8. DB2增删改不记录日志

    第一步:关闭事务自动提交 C:\DB2>db2set DB2OPTIONS=+c +c永久关闭自动提交,-c永久开启自动提交 第二步:表修改为不记录日志 db2 alter table T1 a ...

  9. Linux-基础学习(二)-基本部署

    开始今日份整理 1. 系统优化部分 1.1 Linux防火墙安全相关(重要) 1.1.1 SELinux功能 SELinux(Security-Enhanced Linux) 是美国国家安全局(NSA ...

  10. node+mysql 数据库连接池

    1. 什么是数据库连接池? 数据库连接池是程序启动时建立足够的数据库连接,并将这些连接组成一个池,由程序动态地对池中的连接进行申请,使用和释放. 2. 使用数据库连接池原理及优点是什么? 数据库连接池 ...