LOJ-10105(欧拉回路模板,套圈法,递归)
题目链接:传送门
思路:
(1)用邻接表存储有向图和无向图,有向图和无向图的每条边均站两个单元,无向图有正向边和反向边的区分。
(2)有向图有欧拉回路:所有点的入度=出度;
无向图有欧拉回路:所有点的度数之和是2的倍数。
(3)搜索时要从存在的点开始搜索,注意每条边站两个单位,所以i/2。
(4)搜索的结果路径必须包含所有边,如果图不连通则不行。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = ;
struct Node{
int to,next,val;
}edge[maxn*];
int vis[maxn],head[maxn],IN[maxn],OUT[maxn],tot;
vector <int> ans;
void Init()
{
memset(vis,,sizeof(vis));
memset(head,,sizeof(head));
memset(IN,,sizeof(IN));
memset(OUT,,sizeof(OUT));
tot=;ans.clear();
}
void addedge(int u,int v,int w)
{
edge[tot].to=v;
edge[tot].next=head[u];
edge[tot].val=w;
head[u]=tot++;
}
void dfs(int u)
{
for(int &i=head[u];i;i=edge[i].next){ //对i引用,提高速度
Node tmp=edge[i];
if(!vis[i>>]){
vis[i>>]=;
dfs(tmp.to);
ans.push_back(tmp.val);
}
}
}
int main(void)
{
int n,m,i,j,x,y,type,fg=;
scanf("%d%d%d",&type,&n,&m);
Init();
for(i=;i<=m;i++){
scanf("%d%d",&x,&y);
addedge(x,y,i);
IN[y]++;OUT[x]++;
if(type==) addedge(y,x,-i);
else tot++;
} if(type==){
for(i=;i<=n;i++)
if((IN[i]+OUT[i])%){
fg=;break;
}
}else{
for(i=;i<=n;i++)
if(IN[i]!=OUT[i]){
fg=;break;
}
} if(fg){
for(i=;i<=n;i++) //找到图中存在的点
if(head[i]){
dfs(i);break;
}
if(ans.size()!=m) printf("NO\n");
else{
printf("YES\n");
for(i=m-;i>=;i--){
if(i!=m-) printf(" ");
printf("%d",ans[i]); //ans相当于栈,所以倒叙输出
}
}
}else printf("NO\n");
return ;
}
参考文章:传送门
LOJ-10105(欧拉回路模板,套圈法,递归)的更多相关文章
- UOJ 117 欧拉回路(套圈法+欧拉回路路径输出+骚操作)
题目链接:http://uoj.ac/problem/117 题目大意: 解题思路:先判断度数: 若G为有向图,欧拉回路的点的出度等于入度. 若G为无向图,欧拉回路的点的度数位偶数. 然后判断连通性, ...
- UVA10054-The Necklace(无向图欧拉回路——套圈算法)
Problem UVA10054-The Necklace Time Limit: 3000 mSec Problem Description Input The input contains T t ...
- uva11549 Floyd判圈法
题意: 给两个数n, k,每次将k平方取k的前n位,问所有出现过的数的最大值 原来这就是floyd判圈法.. #include<cstdio> #include<cstdlib> ...
- 破圈法求解最小生成树c语言实现(已验证)
破圈法求解最小生成树c语言实现(已验证) 下面是算法伪代码,每一个算法都取一个图作为输入,并返回一个边集T. 对该算法,证明T是一棵最小生成树,或者证明T不是一棵最小生成树.此外,对于每个算法,无论它 ...
- POJ 2135.Farm Tour 消负圈法最小费用最大流
Evacuation Plan Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4914 Accepted: 1284 ...
- CF F. MST Unification (最小生成树避圈法)
题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...
- 模板——扩展欧几里得算法(求ax+by=gcd的解)
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...
- 聊聊 C# 和 C++ 中的 泛型模板 底层玩法
最近在看 C++ 的方法和类模板,我就在想 C# 中也是有这个概念的,不过叫法不一样,人家叫模板,我们叫泛型,哈哈,有点意思,这一篇我们来聊聊它们底层是怎么玩的? 一:C++ 中的模板玩法 毕竟 C+ ...
- hdu--1878--欧拉回路(并查集判断连通,欧拉回路模板题)
题目链接 /* 模板题-------判断欧拉回路 欧拉路径,无向图 1判断是否为连通图, 2判断奇点的个数为0 */ #include <iostream> #include <c ...
随机推荐
- 知识点:SQL中char、varchar、text区别
Char为定长,varchar,text为变长. 1.CHAR.CHAR存储定长数据很方便,CHAR字段上的索引效率级高,比如定义char(10),那么不论你存储的数据是否达到了10个字节,都要占去1 ...
- VS调试提示“无法启动程序,“...exe”。系统找不到指定文件
当VS调试提示上图所示的警告时,常用的方法是检查“项目”-“属性”-“配置属性”-“常规”-“输出目录”里的路径 项目”-“属性”-“配置属性”-“链接器”-“常规”-“输出文件”里的路径,是否一致, ...
- Java笔记Spring(二)
spring-core 通过Gradle构建工具,转换包的命名空间为org.springframework下 cglib包,net.sf.cglib -> org.springframework ...
- RMI(远程方法调用)入门
这两篇可以入门 http://www.cnblogs.com/ninahan0419/archive/2009/06/25/javarmi.html http://www.cnblogs.com/wx ...
- PHP生成HTML静态页面。
function Generate(){ $html = '<!DOCTYPE html><html lang="en"><head> < ...
- django之signal机制再探
djangobb中的signal post_save信号调用send函数时,为什么它会对与topic.post相关的其他models进行修改?同一个信号,例如post_save(保存过后的处理),是所 ...
- BUILDING WITH BOOTSTRAP
BUILDING WITH BOOTSTRAP Bootstrap Generalizations You just built an impressive webpage using the Boo ...
- 高性能迷你React框架anujs1.0.8发布
本版本由于得到业务线同学的大力支持,掀出许多问题,因此改进地方良多,为anujs在完美替换React的道路上前进了不少.现在anujs经测试可以运行于IE7中.至少怎么做可以参看官网,https:// ...
- LevelDB源码分析-TableBuilder生成sstable
TableBuilder生成sstable(include/table_builder.h table/table_builder.cc) LevelDB使用TableBuilder来构建sstabl ...
- oracle --hint总结
得到一条sql语句执行计划的常用方法:1.explain plan 命令 2.DBMS_XPLAN包3.sqlplus中的AUTOTRACE开关4.10046事件5.10053事件6.AWR报告或者 ...