Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices

vertex:(nr_of_successors) successor1 successor2 ... successorn

...

where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:

nr_of_pairs

(u v) (x y) ...

The input file contents several data sets (at least one).

Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times

For example, for the following tree:

Sample Input

5

5:(3) 1 4 2

1:(0)

4:(0)

2:(1) 3

3:(0)

6

(1 5) (1 4) (4 2)

(2 3)

(1 3) (4 3)

Sample Output

2:1

5:5

Hint

Huge input, scanf is recommended.

输出公共节点的个数(抄的板子有毒..)输入要特殊处理

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define scf(x) scanf("%d",&x)
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+100;
const double eps=1e-8;
using namespace std;
const double pi=acos(-1.0);
const int inf=0xfffffff;
const int MAXN = 1010;
int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[2*MAXN];
int dp[2*MAXN][20];//最小值对应的下标
void init(int n)
{
mm[0] = -1;
for(int i = 1;i <= n;i++)
{
mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
dp[i][0] = i;
}
for(int j = 1; j <= mm[n];j++)
for(int i = 1; i + (1<<j) - 1 <= n; i++)
dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+1];
return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*2];
int tot,head[MAXN]; int F[MAXN*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = 0;
dfs(root,root,0);
st.init(2*node_num-1);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool root[MAXN];
int sum[MAXN];
int main()
{
int n,m,num,x,u;
while(~scf(n))
{
init();
mm(sum,0);
mm(root,true);
rep(i,1,n+1)
{
sf("\t%d\t:\t(\t%d\t)",&u,&num);//一种方法
while(num--)
{
int x;
sf("\t%d\t",&x);
addedge(u,x);
addedge(x,u);
root[x]=false;
}
}
int temp;
rep(i,1,n+1)
{
if(root[i])
{
temp=i;break;
}
}
scf(m);
LCA_init(temp,n);
int v;
while(m--)//另一种输入方法
{
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
sum[query_lca(u,v)]++;
}
rep(i,1,n+1)
{
if(sum[i])
pf("%d:%d\n",i,sum[i]);
}
}
return 0;
}

E - Closest Common Ancestors的更多相关文章

  1. POJ 1470 Closest Common Ancestors

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 17306   Ac ...

  2. poj----(1470)Closest Common Ancestors(LCA)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 15446   Accept ...

  3. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  4. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  5. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  6. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  7. poj1470 Closest Common Ancestors [ 离线LCA tarjan ]

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 14915   Ac ...

  8. BNUOJ 1589 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000ms Memory Limit: 10000KB This problem will be judged on PKU ...

  9. poj——1470 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20804   Accept ...

  10. Closest Common Ancestors POJ 1470

    Language: Default Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissio ...

随机推荐

  1. Java知识回顾 (9) 同步、异步IO

    一.基本概念 同步和异步: 同步和异步是针对应用程序和内核的交互而言的. 同步指的是用户进程触发IO 操作并等待或者轮询的去查看IO 操作是否就绪: 而异步是指用户进程触发IO 操作以后便开始做自己的 ...

  2. 旋转矩阵(Rotation Matrix)的推导及其应用

    向量的平移,比较简单. 缩放也较为简单 矩阵如何进行计算呢?之前的文章中有简介一种方法,把行旋转一下,然后与右侧对应相乘.在谷歌图片搜索旋转矩阵时,看到这张动图,觉得表述的很清晰了. 稍微复杂一点的是 ...

  3. Java全栈程序员之06:IDEA中MAVEN项目依赖及运行

    MAVEN已经成为事实上的企业项目开发中的项目类型.无论是IDEA还是Eclipse,都已经默认支持创建MAVEN项目.严格意义上来说,MAVEN不是一种新的JavaEE项目类型.它凌驾于所以的项目类 ...

  4. iOS:类似于网易云音乐的刷新条目显示弹框

    一.介绍 在app中使用刷新控件或者第三方刷新库是最常见的功能,在请求服务器时,获取数据的过程是处于不可见状态的,那么通过这个刷新状态可以给用户以直观的感受,这是增强用户体验的一个相当好的方法.我个人 ...

  5. 【JavaScript从入门到精通】第一课 初探JavaScript魅力-01

    第一课 初探JavaScript魅力-01 JavaScript是什么 如今我们打开一个大型的网站,都会有很多JS效果的功能和应用.对于学过CSS+HTML的同学,即使是像淘宝那样的网站,用一两天时间 ...

  6. shell编程学习笔记(八):Shell中if判断的使用

    一.if的语法: 1.单分支语句结构 if [ 条件表达式 ]; then 指令 fi 2.双分支语句结构 if [ 条件表达式 ]; then 指令一 else 指令二 fi 3.多分支语句结构 i ...

  7. 关于Django Ajax CSRF 认证

    CSRF(Cross-site request forgery跨站请求伪造,也被称为“one click attack”或者session riding,通常缩写为CSRF或者XSRF,是一种对网站的 ...

  8. 理解Java注解类型

    一. 理解Java注解 注解本质是一个继承了Annotation的特殊接口,其具体实现类是Java运行时生成的动态代理类.而我们通过反射获取注解时,返回的是Java运行时生成的动态代理对象$Proxy ...

  9. 【Android】解析Paint类中Xfermode的使用

    Paint类提供了setXfermode(Xfermode xfermode)方法,Xfermode指明了原图像和目标图像的结合方式.谈到Xfermode就不得不谈它的派生类PorterDuffXfe ...

  10. 唯一ID算法之:snowflake(Java版本)

    Twitter开源的算法,简单易用. /** * Twitter_Snowflake<br> * SnowFlake的结构如下(每部分用-分开):<br> * 0 - 0000 ...