【BZOJ2875】随机数生成器(矩阵快速幂)

题面

Description

栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机数{Xn}:

\[X[n+1]=(aX[n]+c) mod m
\]

其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数总是由上一个数生成的。

用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C++和Pascal的产生随机数的库函数使用的也是这种方法。

栋栋知道这样产生的序列具有良好的随机性,不过心急的他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,...,g-1之间的,他需要将X[n]除以g取余得到他想要的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。

Input

输入包含6个用空格分割的整数m,a,c,X[0],n和g,其中a,c,X[0]是非负整数,m,n,g是正整数。

Output

输出一个数,即X[n] mod g

Sample Input

11 8 7 1 5 3

Sample Output

2

Hint

【样例说明】

计算得X[n]=X[5]=8,故(X[n] mod g) = (8 mod 3) = 2

【数据规模】

40%的数据中m为质数

30%的数据中m与a-1互质

50%的数据中n<=10^6

100%的数据中n<=10^18

40%的数据m,a,c,X[0]<=10^4

85%的数据m,a,c,X[0]<=10^9

100%的数据中m,a,c,X[0]<=10^18

100%的数据中g<=10^8

对于所有数据,n>=1,m>=1,a>=0,c>=0,X[0]>=0,g>=1。

题解

直接矩阵快速幂

乘法要用龟速乘

没了。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
inline ll read()
{
ll x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Dalao
{
ll s[2][2];
void clear()
{
memset(s,0,sizeof(s));
}
void init()
{
s[0][0]=s[1][1]=1;
}
};
ll M,A,C,X0,G,N;
ll ppow(ll a,ll b,ll MOD)
{
ll s=0;
while(b)
{
if(b&1)s=(s+a)%MOD;
a=(a+a)%MOD;
b>>=1;
}
return s;
}
Dalao operator *(Dalao a,Dalao b)
{
Dalao s;s.clear();
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
for(int k=0;k<2;++k)
(s.s[i][j]+=ppow(a.s[i][k],b.s[k][j],M))%=M;
return s;
}
Dalao Pow(Dalao a,ll b)
{
Dalao s;s.clear();s.init();
while(b)
{
if(b&1)s=s*a;
a=a*a;
b>>=1;
}
return s;
}
int main()
{
M=read();A=read();C=read();X0=read();N=read();G=read();
Dalao k;
k.s[0][0]=A;k.s[0][1]=0;k.s[1][0]=k.s[1][1]=1;
k=Pow(k,N);
cout<<((ppow(X0,k.s[0][0],M)+ppow(C,k.s[1][0],M))%M)%G<<endl;
return 0;
}

【BZOJ2875】【NOI2012】随机数生成器(矩阵快速幂)的更多相关文章

  1. [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂

    好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...

  2. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  3. [luogu2044][NOI2012] 随机数生成器 [矩阵快速幂]

    题面: 传送门 思路: 看一眼这个公式: $x\left[n+1\right]=\left(a\ast x\left[n\right]+c\right) mod m$ 递推,数据范围$n\leq 10 ...

  4. bzoj2875随机数生成器——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵快速幂,把x和c分开求,最后加上即可: 为防止爆long long,要用快速乘. ...

  5. Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)

    2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2052 Solved: 1118 Description ...

  6. BZOJ2875 [Noi2012]随机数生成器 【矩阵乘法 + 快速乘】

    题目 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a, ...

  7. bzoj2875: [Noi2012]随机数生成器

    矩阵乘法. x[n] = {x[0],1} * ( {a,0} ^ n ) {b,1} 写成这样谁能看懂.... noi里的大水题.我居然 #include<cstdio> #includ ...

  8. [NOI2012]随机数生成器 矩阵乘法

    Code: #include<cstdio> #include<algorithm> #include<iostream> #include<cstring& ...

  9. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

随机推荐

  1. flask多app和栈的应用

    一.简介     flask的蓝图可以实现url的分发,当有多个app时也可以利用app进行url分发,这里介绍下使用方式和内部原理以及栈的应用. 二.多app使用 使用示例 from werkzeu ...

  2. Asp.Net MVC页面显示后台处理进度问题

    这个问题的背景是,用户通过浏览器上传文件或Excel数据到系统中,页面需要时时显示后台处理进度,以增强用户的体验. 在GitHub上找到一个一个项目,基本实现了这个功能,具体效果如下图 代码实现过程大 ...

  3. prop和attr的比较

    prop来获取或设置固有属性  removeProp()  删除固有属性 attr来获取或设置自定义属性     removeAttr() 删除自定义属性 案例:全选与全不选 <body> ...

  4. Android自动化测试之:获取 参数:comonentName 的值方法

    十年河东十年河西,莫欺少年穷! 不了解Activity的,可参考:http://www.cnblogs.com/tekkaman/archive/2011/06/07/2074211.html 相关代 ...

  5. Nowcoder 牛客练习赛23

    Preface 终于知道YKH他们为什么那么喜欢打牛客网了原来可以抽衣服 那天晚上有空就也去玩了下,刷了一波水TM的YKH就抽到了,我当然是没有了 题目偏水,好像都是1A的.才打了一个半小时,回家就直 ...

  6. 【强化学习】python 实现 q-learning 例一

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10134018.html 问题情境 -o---T# T 就是宝藏的位置, o 是探索者的位置 ...

  7. 【工作感悟】Android 开发者,如何提升自己的职场竞争力?

    前言 该文章是笔者参加 Android 巴士线下交流会成都站 的手写讲稿虚拟场景,所以大家将就看一下. 开始 大家好,我是刘世麟,首先感谢安卓巴士为我们创造了这次奇妙的相遇.现场的氛围也让我十分激动. ...

  8. 懒人小工具1:winform自动生成Model,Insert,Select,Delete以及导出Excel的方法

       懒人小工具2:T4自动生成Model,Insert,Select,Delete以及导出Excel的方法    github地址:https://github.com/Jimmey-Jiang/J ...

  9. 置换群 Burnside引理 Pólya定理(Polya)

    置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...

  10. Java多线程的使用以及原理

    Java有两种方式实现多线程. 第一种——继承Thread类,并重写run方法 步骤: 定义类继承Thread类: 重写子类的run方法,将线程需要执行的代码写在run方法中: 创建子类的对象,则创建 ...