2111: [ZJOI2010]Perm 排列计数

链接

题意:

  称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i>P_{i/2}$. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

  虽然是中文题,但是想加上markdown。

思路:

  好题!

  lucas定理+dp。

  题目要求大小为n的小根堆的方案数,(即给定的二叉树的父节点大于子节点)。

  f[i] 表示以i为根的子树的方案数。siz[i]为大小,即所有的取值。(假设这个子树的取值是1~siz[i])

  f[i] = f[i*2] * f[i*2+1] * C(siz[i]-1,siz[i*2])。

  f[i*2],f[i*2+1]是左右子树中的取值为1~siz的方案数,所以如果随机给这个子树siz个不同的数,同样是一组合法的方案。(给定的siz个数,可以映射到1~n上)。  

  所以总方案数就是,从所有的数中,选siz[ls]个,给左子树的方案数(剩下的自然就是给右子树)。首先根一定是1,在剩下的所有数中(siz[i]-1),给左孩子siz[i*2]个数。就是后面的式子。

  问题:代码19行加入后,wa?

代码:

 #include<cstdio>
#include<algorithm>
#include<iostream> using namespace std;
typedef long long LL;
const int N = ; LL f[N],inv[N],dp[N],siz[N],t[N],p;
int n,mx; void init() {
f[] = f[] = inv[] = inv[] = t[] = t[] = ;
for (int i=; i<=mx; ++i) {
f[i] = (f[i-] * i) % p;
inv[i] = (-(p/i)*inv[p%i]) % p;
inv[i] = (inv[i] + p) % p;
t[i] = t[i-] * inv[i] % p;
// if (inv[i] * i % p != 1) cout << 'a';
}
}
LL Lucas(LL a,LL b) {
if (a < b) return ;
if (a < p && b < p)
return f[a]*t[b]%p*t[a-b]%p;
return Lucas(a/p,b/p)*Lucas(a%p,b%p)%p;
}
int main() {
cin >> n >> p;
mx = min(LL(n),p);
init();
for (int i=n; i>=; --i) {
siz[i] = siz[i<<] + siz[i<<|] + ;
dp[i] = Lucas(siz[i]-,siz[i<<]);
if ((i<<)<=n) dp[i] = (dp[i] * dp[i<<]) % p;
if ((i<<|)<=n) dp[i] = (dp[i] * dp[i<<|]) % p;
}
cout << dp[];
return ;
}

2111: [ZJOI2010]Perm 排列计数的更多相关文章

  1. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  2. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  3. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  4. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  5. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  6. bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  7. bzoj 2111: [ZJOI2010]Perm 排列计数【树形dp+lucas】

    是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1} ...

  8. bzoj 2111: [ZJOI2010]Perm 排列计数

    神题... 扒自某神犇题解: http://blog.csdn.net/aarongzk/article/details/50655471 #include<bits/stdc++.h> ...

  9. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

随机推荐

  1. 【C++ Primer | 03】字符串、向量和数组

    博客链接: c++ 中 const_iterator 和 const vector<>::iterator的区别 const vector <int> ::iterator和v ...

  2. 一个良好划分Activity创建步骤的BaseActivity

    一个Activity的创建过程其实包含几个不同的步骤,基本上都是在onCreate函数中完成的,这些步骤主要有: 设置页面的布局文件 初始化页面包含的控件 设置页面控件的点击响应事件 处理页面的业务逻 ...

  3. [转]sqlplus /nolog 出错解决 SP2-0667: Message file sp1<lang>.msb not found SP2-0750: You may need to set ORACLE_HOME to your Oracle software directory

    http://techxploration.blogspot.com/2012/01/resolving-sp2-0750-you-may-need-to-set.html Resolving SP2 ...

  4. HTML LIST 输入框自动查询追加框,自动过滤 HTML5

    <!DOCTYPE HTML> <html> <body> <form action="/example/html5/demo_form.asp&q ...

  5. 不同网段无法加载ArcGIS Server发布服务解决方法

    问题描述: ArcGIS Server 10发布的服务, (1)在相同网段的Desktop9.3和Engine 9.3程序下可以正常显示, (2)在不同网段Desktop9.3和Engine 9.3程 ...

  6. python生成随机日期字符串

    python生成随机日期字符串 生成随机的日期字符串,用于插入数据库. 通过时间元组设定一个时间段,开始和结尾时间转换成时间戳. 时间戳中随机取一个,再生成时间元组,再把时间元组格式化输出为字符串 # ...

  7. 环形链表(给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null)

    思想: 思想:用快慢指针先判断是否有环,有环则 假设头结点到环入口距离为n,环入口到快慢指针相遇结点距离为m,则慢指针走的路程 为m+n,而快指针走的路程为m+n+k*l (k*l表示绕环走的路程), ...

  8. 20165235 实验二Java面向对象程序设计

    20165235 Java面向对象程序设计 姓名:祁瑛 学号:20165235 班级:1652 实验课程:JAVA程序设计 实验名称:Java面向对象程序设计 实验时间:2018.4.14 指导老师: ...

  9. SSL/TLS

    為 授权计算机为 SSL/TLS 安全通道建立信任关系. ServicePointManager.ServerCertificateValidationCallback += (o, c, ch, e ...

  10. poj 1966(求点连通度,边连通度的一类方法)

    题目链接:http://poj.org/problem?id=1966 思路:从网上找了一下大牛对于这类问题的总结:图的连通度问题是指:在图中删去部分元素(点或边),使得图中指定的两个点s和t不连通  ...