题目描述

“我要成为魔法少女!”   
  “那么,以灵魂为代价,你希望得到什么?” 
“我要将有关魔法和奇迹的一切,封印于卡片之中„„”   
  在这个愿望被实现以后的世界里,人们享受着魔法卡片(SpellCard,又名符
卡)带来的便捷。 
现在,不需要立下契约也可以使用魔法了!你还不来试一试? 
  比如,我们在魔法百科全书(Encyclopedia  of  Spells)里用“freeze”作为关
键字来查询,会有很多有趣的结果。 
例如,我们熟知的Cirno,她的冰冻魔法当然会有对应的 SpellCard 了。 当然,
更加令人惊讶的是,居然有冻结时间的魔法,Cirno 的冻青蛙比起这些来真是小
巫见大巫了。 
这说明之前的世界中有很多魔法少女曾许下控制时间的愿望,比如 Akemi 
Homura、Sakuya Izayoi、„„ 
当然,在本题中我们并不是要来研究历史的,而是研究魔法的应用。 
我们考虑最简单的旅行问题吧:  现在这个大陆上有 N 个城市,M 条双向的
道路。城市编号为 1~N,我们在 1 号城市,需要到 N 号城市,怎样才能最快地
到达呢? 
  这不就是最短路问题吗?我们都知道可以用 Dijkstra、Bellman-Ford、
Floyd-Warshall等算法来解决。 
  现在,我们一共有 K 张可以使时间变慢 50%的 SpellCard,也就是说,在通
过某条路径时,我们可以选择使用一张卡片,这样,我们通过这一条道路的时间
就可以减少到原先的一半。需要注意的是: 
  1. 在一条道路上最多只能使用一张 SpellCard。 
  2. 使用一张SpellCard 只在一条道路上起作用。 
  3. 你不必使用完所有的 SpellCard。 
  给定以上的信息,你的任务是:求出在可以使用这不超过 K 张时间减速的
SpellCard 之情形下,从城市1 到城市N最少需要多长时间。

输入

第一行包含三个整数:N、M、K。 
接下来 M 行,每行包含三个整数:Ai、Bi、Timei,表示存在一条 Ai与 Bi之
间的双向道路,在不使用 SpellCard 之前提下,通过它需要 Timei的时间。

输出

输出一个整数,表示从1 号城市到 N号城市的最小用时。

样例输入

4 4 1
1 2 4
4 2 6
1 3 8
3 4 8

样例输出

7
【样例1 解释】
在不使用 SpellCard 时,最短路为 1à2à4,总时间为 10。现在我们可
以使用 1 次 SpellCard,那么我们将通过 2à4 这条道路的时间减半,此时总
时间为7。

提示

对于100%的数据:1  ≤  K  ≤  N ≤  50,M  ≤  1000。

1≤  Ai,Bi ≤  N,2 ≤  Timei  ≤  2000。

为保证答案为整数,保证所有的 Timei均为偶数。

所有数据中的无向图保证无自环、重边,且是连通的。

  分层图最短路,建立k+1层图,对于每条双向边a,b,c,a连向b边权为c,b连向a边权为c,a连向下一层的b边权为c/2,b连向下一层的a边权为c/2,最后找出每层中n的最短路的最小值。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<vector>
using namespace std;
typedef pair<int,int> pr;
int n,m,k;
int head[2000010];
int next[2000010];
int val[2000010];
int to[2000010];
int d[2000010];
int vis[2000010];
int tot;
int a,b,c;
int ans;
void add(int x,int y,int z)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
}
priority_queue<pr,vector<pr>,greater<pr> >q;
void dijkstar()
{
memset(d,0x3f,sizeof(d));
d[1]=0;
q.push(make_pair(0,1));
while(!q.empty())
{
int now=q.top().second;
q.pop();
if(vis[now])
{
continue;
}
vis[now]=1;
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]>d[now]+val[i])
{
d[to[i]]=d[now]+val[i];
q.push(make_pair(d[to[i]],to[i]));
}
}
}
ans=2147483647;
for(int i=0;i<=k+1;i++)
{
ans=min(ans,d[n*i]);
}
printf("%d",ans);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
for(int j=0;j<=k;j++)
{
add(a+n*j,b+n*j,c);
add(b+n*j,a+n*j,c);
add(a+n*j,b+n*(j+1),c/2);
add(b+n*j,a+n*(j+1),c/2);
}
}
dijkstar();
}

BZOJ2662[BeiJing wc2012]冻结——分层图最短路的更多相关文章

  1. [bzoj2662 BeiJing wc2012] 冻结 (分层图+最短路)

    传送门 Description "我要成为魔法少女!" "那么,以灵魂为代价,你希望得到什么?" "我要将有关魔法和奇迹的一切,封印于卡片之中„„&q ...

  2. bzoj2662 [BeiJing wc2012]冻结 ——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2662 分层图: 我也不知道我写的是不是 bfs (dijkstra?). 代码如下: #in ...

  3. 【bzoj2662】[BeiJing wc2012]冻结 分层图Spfa

    原文地址:http://www.cnblogs.com/GXZlegend 题目描述 “我要成为魔法少女!” “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„ ...

  4. bzoj 2662 [BeiJing wc2012]冻结——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2662 这种的都是分层图. #include<iostream> #include ...

  5. 【最短路】【Heap-Dijkstra】【分层图】bzoj2662 [BeiJing wc2012]冻结

    裸的分层图最短路. #include<cstdio> #include<cstring> #include<queue> #include<algorithm ...

  6. BZOJ2662:[BJWC2012]冻结(分层图最短路)

    Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„”        在这个愿望被实现以后的世界里,人们享 ...

  7. [BJWC2012]冻结 分层图最短路

    昨晚飞行路线之后,这道题就应该能一眼切了 题目当然也不难,跑一遍分层图最短路即可 Code: #include<cstring> #include<algorithm> #in ...

  8. BZOJ2662: [BeiJing wc2012]冻结 spfa+分层图

    Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„”        在这个愿望被实现以后的世界里,人们享 ...

  9. BZOJ2662 [BeiJing wc2012]冻结

    网上的题解都是分层图+spfa或者dijkstra 我觉得dijk太难写了,懒得写,看了一下数据范围$N=50$,这显然是出题人勾引人犯罪 我决定使用floyd的做法,令$f[i][j][t](k)$ ...

随机推荐

  1. Linux 防火墙 开放 端口 iptables

    查看状态:iptables -L -n 方法1.使用iptables开放如下端口/sbin/iptables -I INPUT -p tcp --dport 8000 -j ACCEPT保存/etc/ ...

  2. 基于TerraExplorer Pro 6.1 实现对Shape中Feature对象拾取查询

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. [06] Bean属性的注入

    之前我们提到了Bean实例化的三种方式:构造器方式.静态工厂方式.普通工厂方式.那么对于Bean中的属性,又是如何进行注入的(依赖注入),这个篇章就来提一提. 1.先提提什么是"依赖注入&q ...

  4. 在线图标制作,格式转换 ICON

    在线图标制作,格式转换 https://www.easyicon.net/covert/

  5. LOJ #559. 「LibreOJ Round #9」ZQC 的迷宫

    一道ZZ结论题,主要是来写一写交互题的. 我们要先知道一句话: 扶着墙是肯定可以走出简单迷宫的. 然后我们冷静分析问题.若这个迷宫是\(n\times m\)的,那么最多有\(2mn+n+m\)个墙壁 ...

  6. .NetCore实践篇:成功解决分布式监控ZipKin聚合依赖问题(三)

    前言 读本篇文章之前,可以先读前两篇文章.为了照顾没看过的朋友,我也会稍作复习. 思考大纲: .Net架构篇:思考如何设计一款实用的分布式监控系统? 实践篇一:.NetCore实践篇:分布式监控客户端 ...

  7. Mvc_缓存浅谈

    缓存是将信息放在内存中以避免频繁访问数据库从数据库中提取数据,在系统优化过程中,缓存是比较普遍的优化做法和见效比较快的做法. 对于MVC有Control缓存和Action缓存. 一.Control缓存 ...

  8. Bash : IO 重定向

    标准输入/输出(standard I/O)可能是软件设计原则里最重要的概念了.这个概念就是:程序应该有数据的来源端.数据的目的端(输出结果的地方)已经报告问题的地方,它们分别被称为标准输入(stand ...

  9. 从零开始搭建属于你的React/redux/webpack脚手架

    大家好,我是苏南,今天要给大家分享的是<<我的react入门到放弃之路>>,当然,也不是真的放弃啦--哈哈,这篇博客原本是从17年初写的,一直没有在csdn发布,希望今天不会太 ...

  10. Centos7部署elasticsearch并且安装ik分词以及插件kibana

    第一步 下载对应的安装包 elasticsearch下载地址:https://www.elastic.co/cn/downloads/elasticsearch ik分词下载:https://gith ...