#-*- coding: utf-8 -*-
#餐饮销量数据相关性分析 计算相关系数
from __future__ import print_function
import pandas as pd catering_sale = '../data/catering_sale_all.xls' #餐饮数据,含有其他属性
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列 print("相关系数矩阵,即给出了任意两款菜式之间的相关系数:")
print(data.corr()) #相关系数矩阵,即给出了任意两款菜式之间的相关系数
print("显示“百合酱蒸凤爪”与其他菜式的相关系数:")
print(data.corr()[u'百合酱蒸凤爪']) #只显示“百合酱蒸凤爪”与其他菜式的相关系数
print("计算“百合酱蒸凤爪”与“翡翠蒸香茜饺”的相关系数:")
print(data[u'百合酱蒸凤爪'].corr(data[u'翡翠蒸香茜饺'])) #计算“百合酱蒸凤爪”与“翡翠蒸香茜饺”的相关系数 D:\Download\python3\python3.exe "E:/A正在学习/python data dig/chapter3/demo/code/3-4_correlation_analyze.py"
相关系数矩阵,即给出了任意两款菜式之间的相关系数:
百合酱蒸凤爪 翡翠蒸香茜饺 金银蒜汁蒸排骨 乐膳真味鸡 蜜汁焗餐包 生炒菜心 铁板酸菜豆腐 \
百合酱蒸凤爪 1.000000 0.009206 0.016799 0.455638 0.098085 0.308496 0.204898
翡翠蒸香茜饺 0.009206 1.000000 0.304434 -0.012279 0.058745 -0.180446 -0.026908
金银蒜汁蒸排骨 0.016799 0.304434 1.000000 0.035135 0.096218 -0.184290 0.187272
乐膳真味鸡 0.455638 -0.012279 0.035135 1.000000 0.016006 0.325462 0.297692
蜜汁焗餐包 0.098085 0.058745 0.096218 0.016006 1.000000 0.308454 0.502025
生炒菜心 0.308496 -0.180446 -0.184290 0.325462 0.308454 1.000000 0.369787
铁板酸菜豆腐 0.204898 -0.026908 0.187272 0.297692 0.502025 0.369787 1.000000
香煎韭菜饺 0.127448 0.062344 0.121543 -0.068866 0.155428 0.038233 0.095543
香煎罗卜糕 -0.090276 0.270276 0.077808 -0.030222 0.171005 0.049898 0.157958
原汁原味菜心 0.428316 0.020462 0.029074 0.421878 0.527844 0.122988 0.567332 香煎韭菜饺 香煎罗卜糕 原汁原味菜心
百合酱蒸凤爪 0.127448 -0.090276 0.428316
翡翠蒸香茜饺 0.062344 0.270276 0.020462
金银蒜汁蒸排骨 0.121543 0.077808 0.029074
乐膳真味鸡 -0.068866 -0.030222 0.421878
蜜汁焗餐包 0.155428 0.171005 0.527844
生炒菜心 0.038233 0.049898 0.122988
铁板酸菜豆腐 0.095543 0.157958 0.567332
香煎韭菜饺 1.000000 0.178336 0.049689
香煎罗卜糕 0.178336 1.000000 0.088980
原汁原味菜心 0.049689 0.088980 1.000000
显示“百合酱蒸凤爪”与其他菜式的相关系数:
百合酱蒸凤爪 1.000000
翡翠蒸香茜饺 0.009206
金银蒜汁蒸排骨 0.016799
乐膳真味鸡 0.455638
蜜汁焗餐包 0.098085
生炒菜心 0.308496
铁板酸菜豆腐 0.204898
香煎韭菜饺 0.127448
香煎罗卜糕 -0.090276
原汁原味菜心 0.428316
Name: 百合酱蒸凤爪, dtype: float64
计算“百合酱蒸凤爪”与“翡翠蒸香茜饺”的相关系数:
0.009205803051836528 Process finished with exit code 0

python数据相关性分析 (计算相关系数)的更多相关文章

  1. Python文章相关性分析---金庸武侠小说分析

    百度到<金庸小说全集 14部>全(TXT)作者:金庸 下载下来,然后读取内容with open('names.txt') as f: data = [line.strip() for li ...

  2. Python文章相关性分析---金庸武侠小说分析-2018.1.16

    最近常听同事提及相关性分析,正巧看到这个google的开源库,并把相关操作与调试结果记录下来. 输出结果: 比较有意思的巧合是黄蓉使出打狗棒,郭靖就用了降龙十八掌,再后测试了名词的解析. 小说集可以百 ...

  3. R_Studio(学生成绩)数据相关性分析

    对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r ...

  4. python数据统计量分析

    #-*- coding: utf-8 -*- #餐饮销量数据统计量分析 from __future__ import print_function import pandas as pd cateri ...

  5. Spark Mllib里的如何对两组数据用斯皮尔曼计算相关系数

    不多说,直接上干货! import org.apache.spark.mllib.stat.Statistics 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mlli ...

  6. 用python探索和分析网络数据

    Edited by Markdown Refered from: John Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart, ...

  7. python学习--大数据与科学计算第三方库简介

    大数据与科学计算  库名称 简介 pycuda/opencl GPU高性能并发计算 Pandas python实现的类似R语言的数据统计.分析平台.基于NumPy和Matplotlib开发的,主要用于 ...

  8. python数据抓取分析(python + mongodb)

    分享点干货!!! Python数据抓取分析 编程模块:requests,lxml,pymongo,time,BeautifulSoup 首先获取所有产品的分类网址: def step(): try: ...

  9. 基于Python项目的Redis缓存消耗内存数据简单分析(附详细操作步骤)

    目录 1 准备工作 2 具体实施   1 准备工作 什么是Redis? Redis:一个高性能的key-value数据库.支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使 ...

随机推荐

  1. .net Parallel并行使用注意事项

    因项目响应过慢,代码优化空间不大,在暂时无法调整系统架构的情况下,只有使用.NET中的TPL解决一些模块耗时过多的问题.但在使用过程中也碰到了一些问题,现在把它写下来,用于备忘. 1. Paralle ...

  2. mongodb数据库中插入数据

    mongodb数据库中插入数据 一:connection 访问集合: 在mongodb数据库中,数据是存储在许多数据集合中,可以使用数据库对象的collection方法访问一个集合.该方法使用如下: ...

  3. nodeJS---URL相关模块用法(url和querystring)

    nodeJS---URL相关模块用法(url和querystring) 一: URL模块: URL模块用于解析和处理URL的字符串,提供了如下三个方法: 1. parse 2. format 3. r ...

  4. 使用Nginx来解决跨域的问题

    使用Nginx来解决跨域的问题 nginx的版本:(查看nginx命令: /usr/local/nginx/sbin/nginx -v) nginx/1.4.3 问题是:前端项目域名是 a.xxxx. ...

  5. 2018-2019-2 20175105王鑫浩 实验二《Java面向对象程序设计》实验报告

    一.实验步骤 1.初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装,继承,多态 3.初步掌握UML建模 4.熟悉S.O.L.I.D原则 5.了解设计模式 二.实验内容 (一).单元测试 1 ...

  6. 【Atcoder ARC060F】最良表現 / Best Representation

    Atcoder ARC060 F 题意:给一个串,求将其分成最少的没有循环节的串的种数. 思路:先求KMP的\(fail\)数组.然后发现最少的串数只有三种可能:\(1\).\(2\).\(n\). ...

  7. C++ 函数模板&类模板

    函数模板 #include <iostream> #include <string> using namespace std; template <typename T& ...

  8. Android学习之基础知识九—数据存储(持久化技术)

    数据持久化是将那些内存中的瞬时数据保存到存储设备,保证即使在手机或电脑关机的情况下,这些数据仍然不会丢失. Android系统中主要提供了3种方式用于简单地实现数据持久化功能:文件存储.SharedP ...

  9. java.lang.UnsatisfiedLinkError: No implementation found for int com.baidu.platform.comjni.map.commonmemcache.JNICommonMemCache.Create()

    完整异常: Process: com.example.ai.tabhostdemo, PID: 1287 java.lang.UnsatisfiedLinkError: No implementati ...

  10. LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并

    传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...