1、 安装flume

flume安装,解压后修改flume_env.sh配置文件,指定java_home即可。

cp hdfs jar包到flume lib目录下(否则无法抽取数据到hdfs上):

$ cp /opt/cdh-5.3.6/hadoop-2.5.0-cdh5.3.6/share/hadoop/hdfs/hadoop-hdfs-2.5.0-cdh5.3.6.jar

/opt/cdh-5.3.6/flume-1.5.0-cdh5.3.6-bin/lib/

2、 spark streaming集成flume

2.1)编译spark,获得集成flume jar包:

参考文档:http://www.cnblogs.com/wcwen1990/p/7688027.html

说明:spark streaming集成flume或者kafka需要一些支持jar包,这些jar包在编译spark过程中会自动在external目录下生成相应的jar文件,因此,这里需要编译spark来获得这些jar包。

Spark streaming集成flume主要需要:spark-streaming-flume_2.10-1.3.0.jar包。

2.2)集成jar包

$mkdir –p /opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs

$cp spark-1.3.0/external/flume/target/spark-streaming-flume_2.10-1.3.0.jar

/opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs/

$ pwd

/opt/cdh-5.3.6/flume-1.5.0-cdh5.3.6-bin/lib

$ cp flume-avro-source-1.5.0-cdh5.3.6.jar flume-ng-sdk-1.5.0-cdh5.3.6.jar

/opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs/

$ cd /opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs/

$ ll

flume-avro-source-1.5.0-cdh5.3.6.jar

flume-ng-sdk-1.5.0-cdh5.3.6.jar

spark-streaming-flume_2.10-1.3.0.jar

3、 编译flume配置文件(配置sources、channel、sink):

$ cat flume-spark-push.conf

ss.sources = sss

ss.channels = ssc

ss.sinks = ssk

ss.sources.sss.type = exec

ss.sources.sss.command = tail -f /opt/cdh-5.3.6/flume-1.5.0-cdh5.3.6-bin/wctotal.log

ss.sources.sss.shell = /bin/bash -c

ss.channels.ssc.type = memory

ss.channels.ssc.capacity = 1000

ss.channels.ssc.transactionCapacity = 100

ss.sinks.ssk.type = avro

ss.sinks.ssk.hostname = chavin.king

ss.sinks.ssk.port = 9999

ss.sources.sss.channels = ssc

ss.sinks.ssk.channel = ssc

4、 编写spark streaming程序:

import org.apache.spark._

import org.apache.spark.streaming._

import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.streaming.flume._

import org.apache.spark.storage.StorageLevel

val ssc = new StreamingContext(sc, Seconds(5))

// read data

val stream = FlumeUtils.createStream(ssc, "chavin.king", 9999, StorageLevel.MEMORY_ONLY_SER_2)

stream.count().map(cnt => "Received " + cnt + " flume events." ).print()

ssc.start() // Start the computation

ssc.awaitTermination() // Wait for the computation to terminate

5、 spark-shell local模式测试spark streaming集成flume

$ bin/spark-shell --master local[2] --jars \

/opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs/spark-streaming-flume_2.10-1.3.0.jar,/opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs/flume-avro-source-1.5.0-cdh5.3.6.jar,/opt/cdh-5.3.6/spark-1.3.0-bin-2.5.0-cdh5.3.6/externalLibs/flume-ng-sdk-1.5.0-cdh5.3.6.jar

执行步骤4中程序:

scala> import org.apache.spark._

import org.apache.spark._

scala> import org.apache.spark.streaming._

import org.apache.spark.streaming._

scala> import org.apache.spark.streaming.StreamingContext._

import org.apache.spark.streaming.StreamingContext._

scala> import org.apache.spark.streaming.flume._

import org.apache.spark.streaming.flume._

scala> import org.apache.spark.storage.StorageLevel

import org.apache.spark.storage.StorageLevel

scala> val ssc = new StreamingContext(sc, Seconds(5))

ssc: org.apache.spark.streaming.StreamingContext = org.apache.spark.streaming.StreamingContext@412dea3c

scala> val stream = FlumeUtils.createStream(ssc, "chavin.king", 9999, StorageLevel.MEMORY_ONLY_SER_2)

stream: org.apache.spark.streaming.dstream.ReceiverInputDStream[org.apache.spark.streaming.flume.SparkFlumeEvent] = org.apache.spark.streaming.flume.FlumeInputDStream@2bf9884

scala> stream.count().map(cnt => "Received " + cnt + " flume events." ).print()

//输入以下命令启动spark streaming

scala> ssc.start()

scala> ssc.awaitTermination()

6、 启动flume

bin/flume-ng agent -c conf -n ss -f conf/flume-spark-push.conf -Dflume.root.logger=DEBUG,console

7、 测试spark streaming集成flume:

$ echo “hadoop oracle mysql” >>/opt/cdh-5.3.6/flume-1.5.0-cdh5.3.6-bin/wctotal.log

执行上边命令,可以在spark streaming命令行界面下看到如下内容:

-------------------------------------------

Time: 1499976790000 ms

-------------------------------------------

Received 1 flume events.

8、参考文档:http://spark.apache.org/docs/1.3.0/streaming-flume-integration.html

spark streaming集成flume的更多相关文章

  1. spark streaming集成kafka

    Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Clouder ...

  2. Spark学习之路(十五)—— Spark Streaming 整合 Flume

    一.简介 Apache Flume是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming提供了以下两种方式用于Flu ...

  3. Spark 系列(十五)—— Spark Streaming 整合 Flume

    一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...

  4. Spark Streaming 整合 Flume

    Spark Streaming 整合 Flume ​ 一.简介二.推送式方法        2.1 配置日志收集Flume        2.2 项目依赖        2.3 Spark Strea ...

  5. cdh环境下,spark streaming与flume的集成问题总结

    文章发自:http://www.cnblogs.com/hark0623/p/4170156.html  转发请注明 如何做集成,其实特别简单,网上其实就是教程. http://blog.csdn.n ...

  6. Spark Streaming从Flume Poll数据案例实战和内幕源码解密

    本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分 ...

  7. Spark Streaming处理Flume数据练习

    把Flume Source(netcat类型),从终端上不断给Flume Source发送消息,Flume把消息汇集到Sink(avro类型),由Sink把消息推送给Spark Streaming并处 ...

  8. spark streaming集成kafka接收数据的方式

    spark streaming是以batch的方式来消费,strom是准实时一条一条的消费.当然也可以使用trident和tick的方式来实现batch消费(官方叫做mini batch).效率嘛,有 ...

  9. 解决spark streaming集成kafka时只能读topic的其中一个分区数据的问题

    1. 问题描述 我创建了一个名称为myTest的topic,该topic有三个分区,在我的应用中spark streaming以direct方式连接kakfa,但是发现只能消费一个分区的数据,多次更换 ...

随机推荐

  1. Pilosa文档翻译(一)导言、安装

    目录 导言 安装 安装在MacOS 使用HomeBrew 下载二进制文件 从源码构建 使用Docker 安装在Linux 下载二进制文件 从源码构建 使用Docker 接下来是什么? 导言 原文地址 ...

  2. MySQL技术内幕读书笔记(七)——锁

    锁 ​ 锁是数据库系统区分与文件系统的一个关键特性.为了保证数据一致性,必须有锁的介入.数据库系统使用锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性. lock与latch ​ 使用命令 ...

  3. Nop--NopCommerce源码架构详解专题目录

    最近在研究外国优秀的ASP.NET mvc电子商务网站系统NopCommerce源码架构.这个系统无论是代码组织结构.思想及分层都值得我们学习.对于没有一定开发经验的人要完全搞懂这个源码还是有一定的难 ...

  4. mybatis generator生成文件大小写问题

    mybatis generator插件中,如果 mysql数据表中的字段是用下划线划分的(个人一般都是喜欢这么创建表的字段,如:company_name),那么生成的Vo中会自动对应为companyN ...

  5. [转]Jsoup(一)Jsoup详解(官方)

    原文地址:http://www.cnblogs.com/zhangyinhua/p/8037599.html 一.Jsoup概述 1.1.简介     jsoup 是一款Java 的HTML解析器,可 ...

  6. Python2.x与3.x版本区别

    Python2.x与3.x版本区别 1.print 函数 print语句没有了,取而代之的是print()函数. Python 2.6与Python 2.7部分地支持这种形式的print语法.在Pyt ...

  7. Bayesian RL and PGMRL

    简介: PGMRL: PGMRL就是把RL问题建模成一个概率图模型,如下图所示: 然后通过variational inference的方法进行学习: PGMRL给RL问题的表示给了一个范例,对解决很多 ...

  8. R包的小技巧

    通常我们都是直接使用library(pkg_name)  的形式加载R包,在同一台机器上面,对于我们而言,这个包所在的路径一定是在.libPaths() 路面的,但是对于其他用户而言,这个路径可能不存 ...

  9. Android多种格式的异步解压/压缩解决方案

    前言 最近由于项目需要,需要我谅解一下关于在移动平台的解压功能,在移动平台解压,我个人感觉是没有太大必要的,毕竟手机的性能有限.但是,不口否认,移动端的解压功能又是必备的,因为如果对于一些资源管理器类 ...

  10. 复制id_rsa命令

    pbcopy < ~/.ssh/id_rsa.pub https://aliasan-conf.taijiankong.cn/duotai/2T7b253i8.pac