[读书笔记] R语言实战 (六) 基本图形方法
1. 条形图 barplot()
#载入vcd包
library(vcd)
#table函数提取各个维度计数
counts <- table(Arthritis$Improved)
counts
#绘制简单Improved条形图
#1行2列
par(mfrow=c(1,2))
barplot(counts, main = "simple Bar plot", xlab = "Improved",ylab = "Frequency")
#绘制水平条形图 horiz = TRUE
barplot(counts,main = "simple Bar plot", xlab = "Frequency",ylab = "Improved",horiz=TRUE)
#如果绘制的是一个有序因子,可以使用plot()函数快速创建一幅垂直条形图
#1行1列
par(mfrow=c(1,1))
plot(Arthritis$Improved,xlab = "Frequency",ylab = "Improved",horiz=TRUE)
#如果要绘制的变量是一个矩阵而不是一个向量,将会绘制堆砌条形图或者分组条形图
#生成Improved和Treatment列联表
counts <- table(Arthritis$Improved,Arthritis$Treatment)
counts
#绘制堆砌图
barplot(counts,main = "Stacked Bar plot",xlab = "Treatment",ylab = "Frequency",col = c('red','yellow','green'),legend = rownames(counts))
#绘制分组条形图
barplot(counts,main = "Grouped Bar plot",xlab = "Treatment",ylab = "Frequency",col = c('red','yellow','green'),legend = rownames(counts),beside = TRUE)
#条形图微调
#增加y边界大小
par(mar = c(5,8,4,2))
#las=2旋转条形标签
par(las = 2)
counts <- table(Arthritis$Improved)
#cex.names= 0.8缩小字体的大小
barplot(counts,main="Treatment Outcomes",horiz = TRUE,cex.names=0.8,names.arg = c("No Improvement","Some Improvement","Marked Imporvement"))
2. 饼图:饼图在商业世界中无所不在,然而多数统计学家,包括R相应文档的编写者,都对它持否定态度。相对于饼图,他们更推荐使用条形图或点图,因为相对于
面积,人们对长度的判断更为精确 pie() pie3D()
par(mfrow=c(2,2))
slices <- c(10,12,12.4,16,8)
lbls <- c("US","UK","Austrialia","Germany","France")
pie(slices,labels=lbls,main="simple Chart")
pct <- round(slices/sum(slices)*100)
#拼接字符串和比例数值
lbls2 <- paste(lbls," ", pct,"%",sep = "")
lbls2
pie(slices,labels=lbls2,col=rainbow(length(lbls2)),main="Pie chart with percentage")
#载入ploirix包
library(plotrix)
#画简单3D图
pie3D(slices,labels=lbls,explode = 0.4,main = "3D pei chart")
#从表格创建饼图
#table取得region的计数表
mytable <- table(state.region)
#names 函数取得列名,然后将列名和相应的计数拼接在一起
lbls3 <- paste(names(mytable),'\n',mytable,sep="")
pie(mytable,labels=lbls3,main="pie chart from a table\n{with sample sizes}")
3. 直方图 :可以展示连续变量的分布. hist(x,breaks=, freq = )
x是一个由数据值组成的数值向量,参数freq = FALSE表示根据概率密度而不是频数绘制图形,参数breaks用于控制数组的数量.
par(mfrow = c(2,2))
#简单直方图
hist(mtcars$mpg)
#指定组数和颜色
hist(mtcars$mpg,breaks=12,col='red',xlab="Miles Per Gallon",main="Colored histogram with 12 bins")
hist(mtcars$mpg,freq=FALSE,breaks=12,col='red',xlab="Miles Per Gallon",main="Histogram,rug plot, density curve")
rug(jitter(mtcars$mpg))
#添加核密度图
lines(density(mtcars$mpg),col='blue',lwd=2)
x <- mtcars$mpg
h <- hist(x,breaks=12,col='red',xlab="Miles Per Gallon",main="Histogram with normal curve and box")
#设置横轴范围和分度
xfit <- seq(min(x),max(x),length=40)
yfit <- dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <-yfit*diff(h$mids[1:2]*length(x))
lines(xfit,yfit,col='blue',lwd=2)
box()
4. 核密度图:核密度估计是用于估计随机变量概率密度函数的非参数方法
#当前图像参数列表
opar <- par(no.readonly = TRUE)
par(mfrow=c(2,1))
#默认条件创建
d <- density(mtcars$mpg)
plot(d)
d <- density(mtcars$mpg)
#添加标题和曲线
plot(d,main="kernel Density of Miles per Gallon")
polygon(d,col='red',border="blue")
#添加棕色轴须图
rug(mtcars$mpg,col="brown")
#可比较的核密度函数
#线宽为双倍
#还原初始设置
par(opar)
par(lwd=2)
library(sm)
attach(mtcars)
sm.density.compare(mpg,cyl,xlab='Miles per gallon')
cyl.f <- factor(cyl,levels=c(4,6,8),labels=c("4 cylinder","6 cylinder","8 cylinder"))
title(main="MPG Distribution by Car Cylinders")
#创建颜色向量
colfill <- c(2:(1+length(levels(cyl.f))))
legend(locator(1),levels(cyl.f),fill=colfill)
detach(mtcars)
5. 箱线图:boxplot()
boxplot(mtcars$mpg,main="Box plot",ylab="Miles per gallon")
#并列箱线图跨列比较
boxplot(mpg~cyl,data=mtcars,main="Car Mileage Data",xlab="Number of Cylinders",ylab="Miles per gallon")
#图中可以看到四缸,六缸,八缸耗油中位数不同
6. 点图:在简单水平刻度上绘制大量有标签值的方法, dotchart()
dotchart(mtcars$mpg,labels=row.names(mtcars),cex=.7,main="Gas Mileage for Car Models",xlab="Miles Per Gallon")
#点图通常在经过排序并且分组变量被不同符号和颜色区分开最有用
x <- mtcars[order(mtcars$mpg),]
#分组变量转化为因子
x$cyl <-factor(x$cyl)
x$color[x$cyl==4]<-'red'
x$color[x$cyl==6]<-'blue'
x$color[x$cyl==8]<-'dark green'
dotchart(x$mpg,labels=row.names(x),cex=.7,group=x$cyl,gcolor="black",color=x$color,pch=19,
main="Gas Mileage for Car models\n grouped by cylinder",xlab='Miles Per gallon')
[读书笔记] R语言实战 (六) 基本图形方法的更多相关文章
- [读书笔记] R语言实战 (一) R语言介绍
典型数据分析的步骤: R语言:为统计计算和绘图而生的语言和环境 数据分析:统计学,机器学习 R的使用 1. 区分大小写的解释型语言 2. R语句赋值:<- 3. R注释: # 4. 创建向量 c ...
- [读书笔记] R语言实战 (三) 图形初阶
创建图形,保存图形,修改特征:标题,坐标轴,标签,颜色,线条,符号,文本标注. 1. 一个简单的例子 #输出到图形到pdf文件 pdf("mygrapg.pdf") attach( ...
- [读书笔记] R语言实战 (二) 创建数据集
R中的数据结构:标量,向量,数组,数据框,列表 1. 向量:储存数值型,字符型,或者逻辑型数据的一维数组,用c()创建 ** R中没有标量,标量以单元素向量的形式出现 2. 矩阵:二维数组,和向量一 ...
- [读书笔记] R语言实战 (四) 基本数据管理
1. 创建新的变量 mydata<-data.frame(x1=c(2,2,6,4),x2=c(3,4,2,8)) #方法一 mydata$sumx<-mydata$x1+mydata$x ...
- [读书笔记] R语言实战 (十三) 广义线性模型
广义线性模型扩展了线性模型的框架,它包含了非正态的因变量分析 广义线性模型拟合形式: $$g(\mu_\lambda) = \beta_0 + \sum_{j=1}^m\beta_jX_j$$ $g( ...
- [读书笔记] R语言实战 (十四) 主成分和因子分析
主成分分析和探索性因子分析是用来探索和简化多变量复杂关系的常用方法,能解决信息过度复杂的多变量数据问题. 主成分分析PCA:一种数据降维技巧,将大量相关变量转化为一组很少的不相关变量,这些无关变量称为 ...
- [读书笔记] R语言实战 (五) 高级数据管理
1. 数值函数 1) 数学函数 2) 统计函数 3. 数据标准化 scale() 函数对矩阵或者数据框的指定列进行均值为0,标准化为1的标准化 mydata <- data.frame(c1=c ...
- 《R语言实战》读书笔记--为什么要学
本人最近在某咨询公司实习,涉及到了一些数据分析的工作,用的是R语言来处理数据.但是在应用的过程中,发现用R很不熟练,所以再打算学一遍R.曾经花一个月的时间看过一遍<R语言编程艺术>,还用R ...
- R语言实战(第二版)-part 1笔记
说明: 1.本笔记对<R语言实战>一书有选择性的进行记录,仅用于个人的查漏补缺 2.将完全掌握的以及无实战需求的知识点略去 3.代码直接在Rsudio中运行学习 R语言实战(第二版) pa ...
随机推荐
- [luogu P2756 ] 飞行员配对方案问题 (最大流)
强行做裸题做了两个小时..我果然太水了QAQ 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 ...
- P1546 最短网络 Agri-Net (kruskal)
题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 题目描述 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其 ...
- 提高生产力:发送邮件API和Web服务(包含源码)
在Web开发中,发邮件是一种非常常见的功能或任务. 发送邮件的6种方式 一文提到了6种方法,文章发表后,有网友指出了还有另外一种方法,Ant中也可以发送邮件. 打开Foxmail之类的邮件客户端或者在 ...
- Strtus配置Tomcat出现问题2
启动myeclipse的tomcat6.0有如下提示:The APR based Apache Tomcat Native library which allows optimal performan ...
- asp.net mvc--identity知识点
asp.net identity 特性 one asp.net identity 持久化控制和易于管理 单元测试 自定义角色 基于声明的身份验证 OWIN集成 NuGet包 identity的类图 简 ...
- 根据BDUSS获取用户ID信息
代码在 /data/svndir/business/workroot2/app/ecom/ubec/getuser
- JSP页面标签
1.EL表达式中empty的用法 EL表达式中empty的用法 <c:if test="${! empty key}">${key}</c:if> < ...
- pthread_create()创建线程时传入多个參数
因为接口仅仅定义了一个入參void *arg int pthread_create(pthread_t *tidp,const pthread_attr_t *attr, (void*)(*start ...
- ubuntu16.04安装配置mysql数据库,分割视频为帧图像
参考http://wiki.ubuntu.org.cn/MySQL%E5%AE%89%E8%A3%85%E6%8C%87%E5%8D%97 版本为5.7 一.安装 安装命令sudo apt-get i ...
- SAN (Storage Attached Network),即存储区域网络
NAS和SAN既竞争又合作,很多高端NAS的后端存储就是SAN.NAS和SAN的整合也是存储设备的发展趋势,比如EMC的新产品VNX系列. 关于NAS和SAN的区别,可以列出很多来.比如带宽大小,距离 ...