BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 4920 Solved: 2389
[Submit][Status][Discuss]
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
Source
题目大意:求第$n$个无完全平方因子的数
如果直接硬求得话非常麻烦,因为我们无法确定枚举的范围,只能边枚举边统计,但这样 一定会T
所以我们转换一下思路,二分一个mid,表示$1-mid$中有多少个无完全平方因子的数
我们把$mid$质因数分解为$p_1*p_2*\dots p_k$
设$A_i$表示$\frac{x}{i*i}$,即$1-x$中含有$i*i$这个因子的数的个数
那么答案为
$mid - (A_{p_1} + A_{p_2} + \cdots + A_{p_k}) + (A_{p_1 \cdot p_2} + A_{p_1 \cdot p_3} + \cdots + A_{p_{k-1} \cdot p_k}) + \cdots + (-1)^{k} A_{\prod_{i=1}^{k} p_i}$
然后不难发现每一项的系数即为$mu[k]$,$k$表示分解出来的质数的个数
一个数的平方因子最大为$sqrt(n)$,因此只要枚举到$sqrt(n)$就好
二分的上界有一个公式,设置为$2*x$就好

#include<cstdio>
#include<cstring>
#include<cmath>
#define int long long
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N;
int vis[MAXN],prime[MAXN],mu[MAXN],tot=;
void GetMu()
{
vis[]=;mu[]=;
for(int i=;i<=N;i++)
{
if(!vis[i]) prime[++tot]=i,mu[i]=-;
for(int j=;i*prime[j]<=N&&j<=tot;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==){mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
}
int check(int val)
{
int limit=sqrt(val),ans=;
for(int i=;i<=limit;i++)
ans+=mu[i]*(val/(i*i));
return ans;
}
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
N=1e6+;
GetMu();
int QWQ=read();
while(QWQ--)
{
int x=read();
int l=,r=x<<,ans=;
while(l<=r)
{
int mid=l+r>>;
if(check(mid)>=x) ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
}
return ;
}
BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)的更多相关文章
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛
BZOJ_2440_[中山市选2011]完全平方数_容斥原理 题意: 求第k个不是完全平方数倍数的数 分析: 二分答案,转化成1~x中不是完全平方数倍数的数的个数 答案=所有数-1个质数的平方的倍数+ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440/洛谷P4318 [中山市选2011]完全平方数 莫比乌斯函数
题意:找到第k个无平方因子数. 解法:这道题非常巧妙的运用了莫比乌斯函数的性质! 解法参考https://www.cnblogs.com/enzymii/p/8421314.html这位大佬的.这里我 ...
随机推荐
- 深入jar包:从jar包中读取资源文件
我们常常在代码中读取一些资源文件(比如图片,音乐,文本等等).在单独运行的时候这些简单的处理当然不会有问题.但是,如果我们把代码打成一个jar包以后,即使将资源文件一并打包,这些东西也找不出来了.看看 ...
- Maven安装和eclipse里面的配置
一 . Maven简单介绍 Apache Maven是个项目管理和自动构建工具,基于项目对象模型(POM)的概念. 作用:完成项目的相关操作,如:编译,构建,单元测试,安装,网站生成和基于 ...
- jquery-ui实现拖拽功能
https://www.runoob.com/jqueryui/jqueryui-tutorial.html
- node——buffer
buffe方便数据的传输,可一次性传输一部分数据一.类型介绍1.javascript语言没有读取或操作二进制数据的机制.2.Node.js中引入了Buffer类型可以使我们操作TCP流或文件流3.Bu ...
- oracle 禁用外键约束
1.ORACLE数据库中的外键约束名都在表user_constraints中可以查到.其中constraint_type='R'表示是外键约束.2.启用外键约束的命令为:alter table tab ...
- 把Dev的excel表格用clientdataset保存到数据库中。
网上很多,如何把图片.word.excel等保存到数据库中.可是自己就是死活出现异常,百思不得其解.原因找到了,为什么没有去弄明白: 在sql server字段类型中,我把存储字段设成binary,结 ...
- ongl表达式中得到对象,调用对象方法(OA项目权限显示模块)
在用户是否拥有某项权限的问题 是这样解决的: 用户登录之后 登录信息是保存在session域中的 通过el表达式可得到登录的对象信息 那么怎样判断用户是否拥有某项权限呢 ?如果没有上图中的判断 ...
- ASP.NET-AD开发技巧
分享一篇很好的介绍AD属性的文章 AD图片插件 如何给AD添加图片 http://www.doc88.com/p-9542932844870.html AD过滤条件 重命名ou使用user.Renam ...
- IntelliJ IDEA 对于generated source的处理
IntelliJ IDEA 对于generated source的处理 学习了:https://stackoverflow.com/questions/5170620/unable-to-use-in ...
- [GraphQL] Fetch Server Data and Client-side State in One Query using React Apollo + GraphQL
In this lesson we look at how the Apollo @client directive can be used to fetch client-side state al ...