Sparse Autoencoder(二)
Gradient checking and advanced optimization
In this section, we describe a method for numerically checking the derivatives computed by your code to make sure that your implementation is correct. Carrying out the derivative checking procedure described here will significantly increase your confidence in the correctness of your code.
Suppose we want to minimize
as a function of
. For this example, suppose
, so that
. In this 1-dimensional case, one iteration of gradient descent is given by
Suppose also that we have implemented some function
that purportedly computes
, so that we implement gradient descent using the update
.
Recall the mathematical definition of the derivative as
Thus, at any specific value of
, we can numerically approximate the derivative as follows:
Thus, given a function
that is supposedly computing
, we can now numerically verify its correctness by checking that
The degree to which these two values should approximate each other will depend on the details of
. But assuming
, you'll usually find that the left- and right-hand sides of the above will agree to at least 4 significant digits (and often many more).
Suppose we have a function
that purportedly computes
; we'd like to check if
is outputting correct derivative values. Let
, where
is the
-th basis vector (a vector of the same dimension as
, with a "1" in the
-th position and "0"s everywhere else). So,
is the same as
, except its
-th element has been incremented by EPSILON. Similarly, let
be the corresponding vector with the
-th element decreased by EPSILON. We can now numerically verify
's correctness by checking, for each
, that:
参数为向量,为了验证每一维的计算正确性,可以控制其他变量
When implementing backpropagation to train a neural network, in a correct implementation we will have that
This result shows that the final block of psuedo-code in Backpropagation Algorithm is indeed implementing gradient descent. To make sure your implementation of gradient descent is correct, it is usually very helpful to use the method described above to numerically compute the derivatives of
, and thereby verify that your computations of
and
are indeed giving the derivatives you want.
Autoencoders and Sparsity
Anautoencoder neural network is an unsupervised learning algorithm that applies backpropagation, setting the target values to be equal to the inputs. I.e., it uses
.
Here is an autoencoder:
we will write
to denote the activation of this hidden unit when the network is given a specific input
. Further, let
be the average activation of hidden unit
(averaged over the training set). We would like to (approximately) enforce the constraint
where
is a sparsity parameter, typically a small value close to zero (say
). In other words, we would like the average activation of each hidden neuron
to be close to 0.05 (say). To satisfy this constraint, the hidden unit's activations must mostly be near 0.
To achieve this, we will add an extra penalty term to our optimization objective that penalizes
deviating significantly from
. Many choices of the penalty term will give reasonable results. We will choose the following:
Here,
is the number of neurons in the hidden layer, and the index
is summing over the hidden units in our network. If you are familiar with the concept of KL divergence, this penalty term is based on it, and can also be written
Our overall cost function is now
where
is as defined previously, and
controls the weight of the sparsity penalty term. The term
(implicitly) depends on
also, because it is the average activation of hidden unit
, and the activation of a hidden unit depends on the parameters
.
Visualizing a Trained Autoencoder
Consider the case of training an autoencoder on
images, so that
. Each hidden unit
computes a function of the input:
We will visualize the function computed by hidden unit
---which depends on the parameters
(ignoring the bias term for now)---using a 2D image. In particular, we think of
as some non-linear feature of the input
If we suppose that the input is norm constrained by
, then one can show (try doing this yourself) that the input which maximally activates hidden unit
is given by setting pixel
(for all 100 pixels,
) to
By displaying the image formed by these pixel intensity values, we can begin to understand what feature hidden unit
is looking for.
对一幅图像进行Autoencoder ,前面的隐藏结点一般捕获的是边缘等初级特征,越靠后隐藏结点捕获的特征语义更深。
Sparse Autoencoder(二)的更多相关文章
- DL二(稀疏自编码器 Sparse Autoencoder)
稀疏自编码器 Sparse Autoencoder 一神经网络(Neural Networks) 1.1 基本术语 神经网络(neural networks) 激活函数(activation func ...
- Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...
- (六)6.5 Neurons Networks Implements of Sparse Autoencoder
一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共1000 ...
- UFLDL实验报告2:Sparse Autoencoder
Sparse Autoencoder稀疏自编码器实验报告 1.Sparse Autoencoder稀疏自编码器实验描述 自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值, ...
- 七、Sparse Autoencoder介绍
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 .自编码神经网络是一种无监督学习算法,它使用 ...
- CS229 6.5 Neurons Networks Implements of Sparse Autoencoder
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoen ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- Sparse AutoEncoder简介
1. AutoEncoder AutoEncoder是一种特殊的三层神经网络, 其输出等于输入:\(y^{(i)}=x^{(i)}\), 如下图所示: 亦即AutoEncoder想学到的函数为\(f_ ...
- Exercise:Sparse Autoencoder
斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了 http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724 ...
随机推荐
- 《剑指offer》矩形覆盖
一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...
- Java中将String转json对象
import org.json.simple.JSONObject; import org.json.simple.parser.JSONParser; import org.json.simple. ...
- Qihoo 360 altas 实践
Qihoo 360 altas 实践 简介 Atlas是由 Qihoo 360公司Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目.它在MySQL官方推出的MySQL-Prox ...
- Linux 基础入门二
1.远程连接 ssh协议:secure shell ~]# ss -tnl 查看系统是否监听在tcp协议的22号接口: ~]# ip addr list 或者 ifconfig 查看ip地址 确 ...
- [HAOI2006]旅行(并查集)
寒假填坑五十道省选题——第五道 [HAOI2006]旅行 题目描述 Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路 ...
- CSU 1446 Modified LCS 扩展欧几里得
要死了,这个题竟然做了两天……各种奇葩的错误…… HNU的12831也是这个题. 题意: 给你两个等差数列,求这两个数列的公共元素的数量. 每个数列按照以下格式给出: N F D(分别表示每个数列的长 ...
- Linux系统编程——进程间通信:信号中断处理
什么是信号? 信号是 Linux 进程间通信的最古老的方式.信号是url=474nN303T2Oe2ehYZjkrggeXCaJPDSrmM5Unoh4TTuty4wSgS0nl4-vl43AGMFb ...
- Android——4.2 - 3G移植之路之 APN (五)
APN,这东西对于刚接触的人来说并非那么好理解.对于3G移植上网不可缺少,这里记录一下. 撰写不易,转载请注明出处:http://blog.csdn.net/jscese/article/detail ...
- CKEditor高级编辑器
是否感觉后台分类描写叙述信息.商品描写叙述信息以及文章描写叙述信息 编写时很的不方便?有时候会将word的格式也复制过来了?那这个插件就比較适合了. 本插件使用CKEditor最新版本号,复制过来的内 ...
- cocos2d-x 3.1.1学习笔记[23]寻找主循环 mainloop
文章出自于 http://blog.csdn.net/zhouyunxuan cocos2d到底是怎样把场景展示给我们的,我一直非常好奇. 凭个人猜想,引擎内部的结构类似于这样 while(true ...