基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
有一只特别的狼,它在每个夜晚会进行变色,研究发现它可以变成N种颜色之一,将这些颜色标号为0,1,2...N-1。研究发现这只狼的基因中存在一个变色矩阵,记为colormap,如果colormap[i][j]='Y'则这只狼可以在某一个夜晚从颜色i变成颜色j(一晚不可以变色多次),如果colormap[i][j]=‘N’则不能在一个晚上从i变成j色。进一步研究发现,这只狼每次变色并不是随机变的,它有一定策略,在每个夜晚,如果它没法改变它的颜色,那么它就不变色,如果存在可改变的颜色,那它变为标号尽可能小的颜色(可以变色时它一定变色,哪怕变完后颜色标号比现在的大)。现在这只狼是颜色0,你想让其变为颜色N-1,你有一项技术可以改变狼的一些基因,具体说你可以花费1的代价,将狼的变色矩阵中的某一个colormap[i][j]='Y'改变成colormap[i][j]='N'。问至少花费多少总代价改变狼的基因,让狼按它的变色策略可以从颜色0经过若干天的变色变成颜色N-1。如果一定不能变成N-1,则输出-1.
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据第一行一个整数N,2<=N<=50。
之后有N行,每行N个字符,表示狼的变色矩阵,矩阵中只有‘Y’与‘N’两种字符,第i行第j列的字符就是colormap[i][j]。
Output
每组数据一行输出,即最小代价,无解时输出-1。
Input示例
3
3
NYN
YNY
NNN
8
NNNNNNNY
NNNNYYYY
YNNNNYYN
NNNNNYYY
YYYNNNNN
YNYNYNYN
NYNYNYNY
YYYYYYYN
6
NYYYYN
YNYYYN
YYNYYN
YYYNYN
YYYYNN
YYYYYN
Output示例
1
0
-1 这题很暴力,不过要想通的一点是,cost[i][j] = 第i行j之前出现的‘Y’的数量。
然后求单源最短路径即可,注意:求出为INF即为不可达,输出-1。 Bellman-Ford算法详解:http://www.cnblogs.com/zhangjiuding/p/7712435.html 代码:
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
#define INF 2147483647 struct edge{
int from,to,cost;
}; int t,n,E; edge es[];
int d[]; char color[][]; //Bellman-Ford算法求单源最短路径
void shortest_path(int s){
fill(d,d+n,INF);
d[s] = ; while(true){
bool update = false;
for(int i = ;i < E; i++){
edge e = es[i];
if(d[e.from] != INF && d[e.to] > d[e.from] + e.cost){
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if(!update) break;
}
} int main(){
cin >> t;
while(t--){
cin >> n;
int f = ;
E = ;
for(int i = ;i < n; i++){
int cost = ;
for(int j = ;j < n; j++){
cin >> color[i][j];
if(color[i][j] == 'Y'){
es[E].from = i;
es[E].to = j;
es[E].cost = cost;
cost++;
E++;
}
}
if(color[i][n-] == 'Y') f = ;
} shortest_path();
if(d[n-] != INF)
cout << d[n-] <<endl;
else cout << - << endl;
}
return ;
}

51nod 1445 变色DNA ( Bellman-Ford算法求单源最短路径)的更多相关文章

  1. Dijkstra算法求单源最短路径

    Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店 ...

  2. SPFA算法与dijkstra算法求单源最短路径的比较

    SPFA是运用队列,把所有的点遍历到没有能更新的,点可以重复入队 如题http://www.cnblogs.com/Annetree/p/5682306.html dijkstra是每次找出离源点最近 ...

  3. AOJ GRL_1_A: Single Source Shortest Path (Dijktra算法求单源最短路径,邻接表)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A Single Source Shortest Path In ...

  4. 51nod 1445 变色DNA(dij)

    题目链接:51nod 1445 变色DNA 看了相关讨论再去用最短路:val[i][j]之间如果是'Y',说明i可以到达j,并且i到达j的代价是i那行 1到j-1 里面'Y'的数量. 最后,求 0到n ...

  5. 【转】Dijkstra算法(单源最短路径)

    原文:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路 ...

  6. Dijkstra算法详细(单源最短路径算法)

    介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或 ...

  7. [数据结构与算法-15]单源最短路径(Dijkstra+SPFA)

    单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负 ...

  8. 【算法】单源最短路径和任意两点最短路径总结(补增:SPFA)

    [Bellman-Ford算法] [算法]Bellman-Ford算法(单源最短路径问题)(判断负圈) 结构: #define MAX_V 10000 #define MAX_E 50000 int ...

  9. 51NOD 1445 变色DNA

    1445 变色DNA 有一只特别的狼,它在每个夜晚会进行变色,研究发现它可以变成N种颜色之一,将这些颜色标号为0,1,2...N-1.研究发现这只狼的基因中存在一个变色矩阵,记为colormap,如果 ...

随机推荐

  1. Spark on YARN运行模式(图文详解)

    不多说,直接上干货! 请移步 Spark on YARN简介与运行wordcount(master.slave1和slave2)(博主推荐) Spark on YARN模式的安装(spark-1.6. ...

  2. Core Java(五)

    类和对象&方法 ——类的定义 现实世界的事物 属性:人的身高,体重等 行为:人可以学习,吃饭等 Java中用class描述事物也是如此 成员变量:就是事物的属性 成员方法:就是事物的行为    ...

  3. javascript中菜单栏切换案例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. DataBaseFactory基础了解

     <add name="Connection str" connectionString="data source=.;pwd=12;uid=sa;database ...

  5. c# rc4算法,加密解密类

    rc4算法,原理,以密匙生成256位的密匙流,然后以车轮式滚过源数据异或加密. /* * 由SharpDevelop创建. * 用户: YISH * 日期: 04/04/2015 * 时间: 03:0 ...

  6. 给大家介绍几个常见的Android代码片段

    今天在源码天堂那个网站,也下载了一个不错的Android源码特效,现在分享一下给博客园的朋友吧,个人觉得那个网站还是挺不错的,希望大家能够使用得上. 仿美图秀秀拼图功能源码 仿美图秀秀拼图功能源码,最 ...

  7. CorelDRAW X6最新注册激活机制

    最近购买CorelDRAW X6的小伙伴可能对如何注册激活软件存在疑惑,下面小编一步步教您如何快速激活CorelDRAW X6. CorelDRAW X6最新注册机制如下: 1.关注“Corel服务中 ...

  8. LD_DEBUG

    LD_DEBUG 是 glibc 中的 loader 为了方便自身调试而设置的一个环境变量.通过设置这个环境变量,可以方便的看到 loader 的加载过程. LD_DEBUG=help ./main ...

  9. BZOJ 2314 士兵的放置(支配集)

    显然是\(DP\). 设\(dp[i][0/1/2]\)代表以i为根且\(i上有士兵放置/i被控制但i上没有士兵/i没有被控制\)的最小代价. \(g[i][0/1/2]\)代表对应的方案数. 然后运 ...

  10. linux中一次创建多个目录

    linux中创建目录当然使用命令工具mkdir == (make directory),联想记忆法能让你记得牢固. 如果你要创建几个目录,例如:dir1目录,dir2目录,dir3目录可以这样 mkd ...