题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值。

思路:用区间DP能够非常方便解决,多边形可能是凹边形,注意剖分的三角形必须在多边形内部,所以能够去掉剖分的三角形中包括其它点,可是其它的在多边形外部的三角形没想到其它方法去除。却ac了,不懂为何

//	Accepted	C++	0.042
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define inf 0x3f3f3f3f
const double esp = 1e-6;
int n;
struct point
{
double x,y; }poi[55];
double dp[55][55];
double area(point a,point b,point c)
{
return fabs((b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y)) / 2.0 ;
}
bool judge(int a,int b,int c)
{
for(int i = 1;i<=n;i++ )
{
if(i==a||i==b||i==c) continue;
double s=area(poi[i],poi[a],poi[b])+area(poi[i],poi[b],poi[c])+area(poi[i],poi[c],poi[a]);
if(fabs(s-area(poi[a],poi[b],poi[c]))<esp) return true;
}
return false;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&poi[i].x,&poi[i].y);
}
for(int l=2;l<n;l++)
for(int p=1;p+l<=n;p++)
{
dp[p][p+l]=inf;
for(int k=p+1;k<p+l;k++)
{
if(judge(p,k,p+l)) continue;
dp[p][p+l]=min(dp[p][p+l],max(max(dp[p][k],dp[k][p+l]),area(poi[p],poi[k],poi[p+l])) );
}
}
printf("%.1f\n",dp[1][n]);
}
return 0;
}

Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)的更多相关文章

  1. uva 1331 - Minimax Triangulation(dp)

    option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4077&mosm ...

  2. UVa 1331 - Minimax Triangulation(区间DP + 计算几何)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)

    题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...

  4. UVa 1331 最大面积最小的三角剖分

    https://vjudge.net/problem/UVA-1331 题意:输入一个多边形,找一个最大三角形面积最小的三角剖分,输出最大三角形的面积. 思路: 最优三角剖分. dp[i][j]表示从 ...

  5. UVA Live Archive 4394 String painter(区间dp)

    区间dp,两个str一起考虑很难转移. 看了别人题解以后才知道是做两次dp. dp1.str1最坏情况下和str2完全不相同,相当于从空白串开始刷. 对于一个区间,有两种刷法,一起刷,或者分开来刷. ...

  6. UVA 10003 cuting sticks 切木棍 (区间dp)

    区间dp,切割dp[i][j]的花费和切法无关(无后效性) dp[i][j]表示区间i,j的花费,于是只要枚举切割方法就行了,区间就划分成更小的区间了.O(n^3) 四边形不等式尚待学习 #inclu ...

  7. UVA 11584 Partitioning by Palindromes (字符串区间dp)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  8. UVA 1626 Brackets sequence(括号匹配 + 区间DP)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=105116#problem/E 题意:添加最少的括号,让每个括号都能匹配并输出 分析:dp ...

  9. 【UVA】10891 Game of Sum(区间dp)

    题目 传送门:QWQ 分析 大力dp.用$ dp[i][j] $表示$ [i,j] $A能得到的最高分 我看到博弈论就怂... 代码 #include <bits/stdc++.h> us ...

随机推荐

  1. [转]Linux中set,env和export这三个命令的区别

    转自:http://www.2cto.com/os/201306/223758.html Linux中set,env和export这三个命令的区别   set命令显示当前shell的变量,包括当前用户 ...

  2. IIS: 响应消息的内容类型 text/html; charset=utf-8 与绑定(text/xml; charset=utf-8)的内容类型不匹配。如果使用自定义编码器,请确保正确实现 IsContentTypeSupported 方法

    以前好好的项目,突然出现了这个问题.一顿google后无果,有人说是程序池的原因,有人说是安全配置的原因,照着网上方法试了多次,还是没有解决.如下图: 突然发现了一片文章 (https://www.j ...

  3. Android开发之ThreadLocal原理深入理解

    [Android]ThreadLocal的定义和用途 ThreadLocal用于实现在不同的线程中存储线程私有数据的类.在多线程的环境中,当多个线程需要对某个变量进行频繁操作,同时各个线程间不需要同步 ...

  4. 如何成为一名出色的Oracle数据库管理员

    主要针对Oracle DBA在成长阶段的定位,学习方法等几大方面进行了经典的论述,详细内容请参考下文. 一.定位 Oracle分两大块,一块是开发,一块是管理.开发主要是写写存储过程.触发器什么的,还 ...

  5. TensorFlow学习---入门(一)-----MNIST机器学习

    参考教程:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html 数据下载地址:http://wiki.jikexueyuan.com ...

  6. JS——arguments

    1.只在函数中使用 2.返回的是实参的数组 <script> getNum(1, 2);//(2) [1, 2, callee: ƒ, Symbol(Symbol.iterator): ƒ ...

  7. [Windows Server 2008] 查看PHP详细错误信息

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:查看IIS ...

  8. Java_Web三大框架之Hibernate 入门(一)

    一.Hibernate简介: Hibernate作者——Gavin King Hibernate创始人 < Hibernate in action >作者 EJB 3.0的Entity b ...

  9. 关于Python中的classmethod

    Python 中的 classmethod classmethod: 作用是直接将自己的类对象,传给类方法. 一.classmethod 1)不用classmethod的时候 你的代码可能是这样写的, ...

  10. js 获取 鼠标位置 和获取元素位置

    ]; body.addEventListener("mousemove", outpostion); function outpostion() { console.log(&qu ...