Hive之 数据存储
首先,Hive 没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
其次,Hive 中所有的数据都存储在 HDFS 中,Hive 中包含以下数据模型:Table,External Table,Partition,Bucket。
1)表table:一个表就是hdfs中的一个目录
2)区Partition:表内的一个区就是表的目录下的一个子目录
3)桶Bucket:如果有分区,那么桶就是区下的一个单位,如果表内没有区,那么桶直接就是表下的单位,桶一般是文件的形式。
- Hive 中的 Table 和数据库中的 Table 在概念上是类似的,每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 pvs,它在 HDFS 中的路径为:/wh/pvs,其中,wh 是在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录,所有的 Table 数据(不包括 External Table)都保存在这个目录中。
- Partition 对应于数据库中的 Partition 列的密集索引,但是 Hive 中 Partition 的组织方式和数据库中的很不相同。在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中。例如:pvs 表中包含 ds 和 city 两个 Partition,则对应于 ds = 20090801, ctry = US 的 HDFS 子目录为:/wh/pvs/ds=20090801/ctry=US;对应于 ds = 20090801, ctry = CA 的 HDFS 子目录为;/wh/pvs/ds=20090801/ctry=CA。表是否分区,如何添加分区,都可以通过Hive-QL语言完成。通过分区,即目录的存放形式,Hive可以比较容易地完成对分区条件的查询。
- Buckets 对指定列计算 hash,根据 hash 值切分数据,目的是为了并行,每一个 Bucket 对应一个文件。将 user 列分散至 32 个 bucket,首先对 user 列的值计算 hash,对应 hash 值为 0 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00000;hash 值为 20 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00020 。桶是Hive的最终的存储形式。在创建表时,用户可以对桶和列进行详细地描述。
- External Table 指向已经在 HDFS 中存在的数据,可以创建 Partition。它和 Table 在元数据的组织上是相同的,而实际数据的存储则有较大的差异。
- Table 的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。
- External Table 只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在 LOCATION 后面指定的 HDFS 路径中,并不会移动到数据仓库目录中。当删除一个 External Table 时,仅删除
Hive之 数据存储的更多相关文章
- hadoop笔记之Hive的数据存储(视图)
Hive的数据存储(视图) Hive的数据存储(视图) 视图(view) 视图是一种虚表,是一个逻辑概念:可以跨越多张表 既然视图是一种虚表,那么也就是说用操作表的方式也可以操作视图 但是视图是建立在 ...
- hadoop笔记之Hive的数据存储(桶表)
Hive的数据存储(桶表) Hive的数据存储(桶表) 桶表 桶表是对数据进行哈希取值,然后放到不同文件中存储. 比如说,创建三个桶,而创建桶的原则可以按照左边表中学生的名字来创建对应的桶.这样子把左 ...
- hadoop笔记之Hive的数据存储(外部表)
Hive的数据存储(外部表) Hive的数据存储(外部表) 外部表 指向已经在HDFS中存在的数据,可以创建Partition 它和内部表在元数据的组织上是相同的,而实际数据的存储则有较大的差异 外部 ...
- hadoop笔记之Hive的数据存储(分区表)
Hive的数据存储(分区表) Hive的数据存储(分区表) 分区表 Partition对应于数据库的Partition列的密集索引 在Hive中,表中的一个Partition对应于表下的一个目录,所有 ...
- hadoop笔记之Hive的数据存储(内部表)
Hive的数据存储(内部表) Hive的数据存储(内部表) 基于HDFS 可使用hadoop给我们提供的web管理工具查看数据.打开管理工具localhost:9000–>Utilities下的 ...
- Hive 表操作(HIVE的数据存储、数据库、表、分区、分桶)
1.Hive的数据存储 Hive的数据存储基于Hadoop HDFS Hive没有专门的数据存储格式 存储结构主要包括:数据库.文件.表.试图 Hive默认可以直接加载文本文件(TextFile),还 ...
- 一文彻底搞懂Hive的数据存储与压缩
目录 行存储与列存储 行存储的特点 列存储的特点 常见的数据格式 TextFile SequenceFile RCfile ORCfile 格式 数据访问 Parquet 测试 准备测试数据 存储空间 ...
- hive基本结构与数据存储
一.Hive简介 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能.还可以将 SQL 语句转换为 MapReduce 任务进行运行,通过自 ...
- Hive[4] 数据定义 HiveQL
HiveQL 是 Hive 查询语言,它不完全遵守任一种 ANSI SQL 标准的修订版,但它与 MySQL 最接近,但还有显著的差异,Hive 不支持行级插入,更新和删除的操作,也不支持事务,但 H ...
随机推荐
- C#反射——模仿ParameterInterceptor(ashx处理程序)
反射工具类请参见:https://www.cnblogs.com/threadj/p/10535796.html using System; using System.Collections.Gene ...
- 反射_IsDefined判断方法上有自定义的标签
在.NET 4.0(当然也包括4.0以前的版本)下,用反射判断某个方法是否运用了自定义Attribute时,可以通过调用MethodInfo的IsDefined()方法进行确认.当然,IsDefine ...
- SQL优化之limit 1
在某些情况下,如果明知道查询结果只有一个,SQL语句中使用LIMIT 1会提高查询效率. 例如下面的用户表(主键id,邮箱,密码): create table t_user( id int prim ...
- Python3.x:os.listdir和os.walk(获取路径方法)的区别
Python3.x:os.listdir和os.walk(获取路径方法)的区别 1,os.listdir 使用情况:在一个目录下面只有文件,没有文件夹,这个时候可以使用os.listdir: 例如:d ...
- 利用ansible进行自动化构建etcd集群
上一篇进行了手动安装etcd集群,此篇利用自动化工具ansible为三个节点构建etcd集群 环境: master:192.168.101.14,node1:192.168.101.15,node2: ...
- Linux网络子系统之---- PHY 配置
MII即媒体独立接口,也叫介质无关接口. 它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1). 数据接口包括分别用于发送器和接收器的两条独立信道.每条信道都有自己的数据.时钟和控制信号. ...
- 解决use -D_SCL_SECURE_NO_WARNINGS的问题
加入预处理器(项目属性----C/C++----预处理----预处理器定义): _SCL_SECURE_NO_WARNINGS
- [osg]osgDB的加载机制,使用3DS插件做参考(转,整理现有osgDB资料)
参考:http://blog.sina.com.cn/s/blog_7cdaf8b60102uzu3.html http://blog.csdn.net/wang15061955806/article ...
- 深入浅出 Hadoop YARN
一. Hadoop Yarn 是什么 在古老的 Hadoop1.0 中,MapReduce 的 JobTracker 负责了太多的工作,包括资源调度,管理众多的 TaskTracker 等工作.这自然 ...
- Angular4笔记——表单状态相关的属性
表单状态字段(FromControl)touched和untouched用来判断用户是否访问过一个字段(也就是这个字段是否获取过焦点,如果获取过焦点,touched是true,untouched是fa ...