怎样理解非线性变换和多层网络后的线性可分,神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非线性变换

线性可分:

  • 一维情景:以分类为例,当要分类正数、负数、零,三类的时候,一维空间的直线可以找到两个超平面(比当前空间低一维的子空间。当前空间是直线的话,超平面就是点)分割这三类。但面对像分类奇数和偶数无法找到可以区分它们的点的时候,我们借助 x % 2(除2取余)的转变,把x变换到另一个空间下来比较0和非0,从而分割奇偶数。

  • 二维情景:平面的四个象限也是线性可分。但下图的红蓝两条线就无法找到一超平面去分割。

    神经网络的解决方法依旧是转换到另外一个空间下,用的是所说的5种空间变换操作。比如下图就是经过放大、平移、旋转、扭曲原二维空间后,在三维空间下就可以成功找到一个超平面分割红蓝两线 (同SVM的思路一样)。

  • 上面是一层神经网络可以做到的空间变化。若把y⃗ y→ 当做新的输入再次用这5种操作进行第二遍空间变换的话,网络也就变为了二层。最终输出是y⃗ =a2(W2⋅(a1(W1⋅x⃗ +b1))+b2)y→=a2(W2⋅(a1(W1⋅x→+b1))+b2)。设想当网络拥有很多层时,对原始输入空间的“扭曲力”会大幅增加,如下图,最终我们可以轻松找到一个超平面分割空间。

  • 当然也有如下图失败的时候,关键在于“如何扭曲空间”。所谓监督学习就是给予神经网络网络大量的训练例子,让网络从训练例子中学会如何变换空间。每一层的权重WW就控制着如何变换空间,我们最终需要的也就是训练好的神经网络的所有层的权重矩阵。。这里有非常棒的可视化空间变换demo,一定要打开尝试并感受这种扭曲过程。 更多内容请看Neural Networks, Manifolds, and Topology
    • 线性可分视角:神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非线性变换,将原始输入空间投向线性可分/稀疏的空间去分类/回归。

      增加节点数:增加维度,即增加线性转换能力。

      增加层数:增加激活函数的次数,即增加非线性转换次数。

数学表达式
 
上面数学思维角度学习了神经网络的原理。下面推到数学表达式
神经网络如下图:
因为每一个节点都是一个神经元。有 Y=a*(W*X+b)   a 是激活函数。w是权值,b是偏移量。
对于a4有如下
 
 
y1有如下的表达式
 
所以有如下表达式:

 
然后:令
代入上面的的方程得到
 
 再带入带入
得到y1 = f(w8*a8)
其中w8= [w84 w85 w86 w87 w8b]
a = [a4,a5,a6,a7,1]
所以对于多次网络
 
可以写成
 
 
训练参数

 因为所有的参数都不能通过求解获得,而是根据不同的输入和输出的比较训练出来的,所以都是监督学习。
 
结论:
 (这里在下节会介绍推理过程,为什么要这样调整权值呢?因为原式为:Wji(新)<-Wji(旧)-(步长*(误差函数对权值的偏导数)))
 
过程如图:注意里面的变量符号:&
从输出层到&有如下表达式:推倒过程下一个节分析
 
其中,&是节i的误差项,是节点的输出值,是样本对应于节点的目标值。举个例子,根据上图,对于输出层节点8来说,它的输出值是,而样本的目标值是,带入上面的公式得到节点8的误差项应该是:
 
同时对于隐含层有
 
所以有
 将③和④合并,然后求出w有
 
所以有:
 有
 
这个过程叫做BP过程,下一个章节重点分析过程的推倒和原理。

深度学习(一) BP神经网络的更多相关文章

  1. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  2. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  3. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  4. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  5. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  6. deeplearning.ai 神经网络和深度学习 week4 深层神经网络 听课笔记

    1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...

  7. 深度学习之循环神经网络(RNN)

    循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络,适合用于处理视频.语音.文本等与时序相关的问题.在循环神经网络中,神经元不但可以接收其他神经元 ...

  8. 深度学习之卷积神经网络(CNN)

    卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...

  9. 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping

    一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...

  10. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

随机推荐

  1. 深水划水队项目---七天冲刺之day5

    站立式会议: 因为今天有成员回家,不能进行线下站立式会议,只能线上进行语音聊天 工作进度:  昨天完成的任务: 游戏功能的基本实现 商讨出如何实现游戏中的难度选择功能与道具功能 商讨出站立式会议能线下 ...

  2. [ThinkPHP] 比较标签 neq&nheq 与 PHP 中的 != 与 !== 出现的问题

    1. 模板 > 内置标签 > 比较标签 控制器: $_data['list'] = [ 'dingo' , 'engo' , 'fengo' , 'gingo' , 'autoFill'= ...

  3. Lucene教程(四) 索引的更新和删除

    这篇文章是基于上一篇文章来写的,使用的是IndexUtil类,下面的例子不在贴出整个类的内容,只贴出具体的方法内容. 3.5版本: 先写了一个check()方法来查看索引文件的变化:   /**   ...

  4. [记]Centos下流量统计使用记录

    因为最近要进行centos流量统计,需求是想针对tomcat进行针对性的上下行流量时段统计及汇总,找了很多资料及命令,要么是可以针对进程的但是没有汇总,要么是有汇总但是不针对进程. 所以只能混合几个命 ...

  5. [Git00] Pro Git 一二章读书笔记

    记得知乎以前有个问题说:如果用一天的时间学习一门技能,选什么好?里面有个说学会Git是个很不错选择,今天就抽时间感受下Git的魅力吧.   Pro Git (Scott Chacon) 读书笔记:   ...

  6. Snapshot--使用Snapshot来还原数据库

    在数据库升级时,为防止升级失败造成的影响,我们通常需要: 1.准备回滚脚本,用于失败后回滚 2.在升级前备份数据库,用于失败后恢复 但回滚脚本需要花费很长时间准备,而备份恢复会导致数据库长时间不可用, ...

  7. jQuery-关于Ajax请求async属性的说明及总结

    在jquery的ajax中如果希望实现同步或者异步,我们可以设置async(默认true,表示异步请求),下面举例说明两种请求方式的区别. 1.后台代码 public JsonResult GetDa ...

  8. eFrameWork学习笔记-eList

    HTML: <div style="margin:8px;"> <h1>.不分页</h1> <asp:Repeater id=" ...

  9. Js异常捕获

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. Message Loop 原理及应用

    此文已由作者王荣涛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Message loop,即消息循环,在不同系统或者机制下叫法也不尽相同,有被叫做event loop,也有 ...