Ghostbusters(并查集,最小生成树)
Ghostbusters
时间限制: 1 Sec 内存限制: 128 MB
提交: 33 解决: 7
[提交] [状态] [讨论版] [命题人:admin]
题目描述
A computer keyboard is an array of M rows and N columns of buttons. Every button has an associated probability. Furthermore, every column and every row of buttons has an associated cable, and every pressed button connects their row cable with their column cable (and vice versa!). The keyboard detects key presses by “sampling”. It sends an electric signal through the first row. This signal spreads to columns that are connected to it through pressed buttons
on that column and to rows connected to these columns through other pressed buttons and so on. Every row or column that is connected, possibly indirectly, to the original row via pressed buttons receives the signal. The firmware stores which columns have received the signal. This process is repeated for every row.
It is easy to identify what was pressed if only one key was pressed. In this case only one pair (row, column) will make contact. But keyboards allow to press more than one key at the same time and unfortunately some combinations of key presses are impossible to tell apart.
This phenomenon is called “ghosting”. For example, in a 2 × 2 keyboard, all combinations of three or four presses are impossible to tell apart, since every pair (row, column) makes electric contact (maybe indirectly), as can be seen in Figure 3.

Figure 3: Four examples of connected wires in a keyboard. Bold lines of the same colour indicate wires that are connected via pressed buttons, which are depicted as red dots. The two sets of pressed buttons on the right cannot be distinguished from each other, since they connect the same rows and columns.
The BAPC wants to deal with the problem of ghosting by finding the most likely combination of pressed keys that could have produced a particular set of signals.
输入
• A line containing two integers, M the number of rows of the keyboard and N the number of columns, with 1 ≤ M, N ≤ 500.
• M lines with N numbers each, where the jth number in the ith line indicates the probability 0 < p < 0.5 that the key in row i and column j is pressed. Here 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1.
• M lines, each with an integer 0 ≤ k ≤ N and a list of k integers. The list of integers on the ith line indicates the columns that received the signal emitted by the ith row.
输出
样例输入
2 2
0.1 0.4
0.4 0.4
2 0 1
2 0 1
样例输出
0 1
1 0
1 1
思路:题意晦涩难懂,读明白就非常简单!
AC代码:
#include <bits/stdc++.h>
using namespace std;
struct UnionFind
{
vector<int> par,ra,si;
int c;
UnionFind(int n):par(n),ra(n,),si(n,),c(n)
{
for(int i=;i<n;++i) par[i]=i;
}
int findd(int i)
{
return (par[i]==i?i:(par[i]=findd(par[i])));
}
bool same(int i,int j)
{
return findd(i)==findd(j);
}
int get_size(int i)
{
return si[findd(i)];
}
int countt()
{
return c;
}
void merg(int i, int j)
{
if((i=findd(i))==(j=findd(j))) return;
c--;
if(ra[i]>ra[j]) swap(i,j);
par[i]=j;
si[j]+=si[i];
if(ra[i]==ra[j]) ra[j]++;
}
};
struct prob
{
double p;
int r,c;
};
bool cmp(const prob &l, const prob &r)
{
return l.p>r.p;
}
bool super_cmp(const prob &l,const prob &r)
{
return tie(l.r,l.c)<tie(r.r,r.c);
}
int main()
{
int m,n;
scanf("%d %d",&m,&n);
vector<prob> ps;
ps.reserve(m*n);
for(int r=;r<m;++r)
{
for(int c=;c<n;++c)
{
prob p{,r,c};
scanf("%lf",&p.p);
ps.push_back(p);
}
}
UnionFind target(m+n),cur(m+n);
for(int r=;r<m;++r)
{
int k,c;
scanf("%d",&k);
while(k--) scanf("%d",&c),target.merg(r,m+c);
}
sort(ps.begin(),ps.end(),cmp);
vector<prob> ans;
for(auto &p:ps)
{
if(target.same(p.r,m+p.c) && !cur.same(p.r,m+p.c))
{
cur.merg(p.r,m+p.c),ans.push_back(p);
}
}
sort(ans.begin(),ans.end(),super_cmp);
for(auto &x:ans) printf("%d %d\n",x.r,x.c);
return ;
}
Ghostbusters(并查集,最小生成树)的更多相关文章
- 并查集 & 最小生成树详细讲解
并查集 & 最小生成树 并查集 Disjoint Sets 什么是并查集? 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将 ...
- ACM: 继续畅通工程-并查集-最小生成树-解题报告
继续畅通工程 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Descri ...
- CodeForces892E 可撤销并查集/最小生成树
http://codeforces.com/problemset/problem/892/E 题意:给出一个 n 个点 m 条边的无向图,每条边有边权,共 Q 次询问,每次给出 ki 条边,问这些边 ...
- hdu 1863 畅通工程 (并查集+最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1863 畅通工程 Time Limit: 1000/1000 MS (Java/Others) M ...
- CodeForces - 891C: Envy(可撤销的并查集&最小生成树)
For a connected undirected weighted graph G, MST (minimum spanning tree) is a subgraph of G that con ...
- ACM : Travel-并查集-最小生成树 + 离线-解题报告
Travel Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u /*题意 给出n[节点 ...
- Aizu-2224Save your cats并查集+最小生成树
Save your cats 题意:存在n个点,有m条边( input中读入的是 边的端点,要先转化为边的长度 ),做一个最小生成树,使得要去除的边的长度总和最小: 思路:利用并查集和求最小生成树的方 ...
- ACM: meixiuxiu学图论-并查集-最小生成树-解题报告
/* 最小生成树,最小环的最大权值按照排序后去构建最小生成树就可以了,注意遇到的第一个根相同的点就记录权值,跳出,生成的环就是最小权值环. */ //AC代码: #include"iostr ...
- hdu1875 畅通工程再续 并查集/最小生成树
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全 ...
- ACM: 还是畅通工程-并查集-最小生成树-解题报
还是畅通工程 Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description 某省调查乡村交通 ...
随机推荐
- Troubleshooting ORA-201 and ORA-202 Error
---- 3. When lowering the value of COMPATIBLE: You cannot start the database with lower compatibilit ...
- Spring---数据缓存(未完待续)
1.为什么需要数据缓存? 程序的瓶颈大都在数据库,而内存的速度是远远大于硬盘的,当我们需要重复读取相同数据时,一次又一次的请求数据库或者远程服务,导致大量的时间浪费在数据库或者 远程服务上,导致程序性 ...
- C# IO流 File.Exists,Directory.Exists, File.Create,Directory.CreateDirectory
void Start() { CreateDirectory(); CreateFile(); } //平台的路径(封装起来的一个属性,这不是一个方法) public string path { ge ...
- (转)awk数组详解及企业实战案例
awk数组详解及企业实战案例 原文:http://www.cnblogs.com/hackerer/p/5365967.html#_label03.打印数组:1. [root@nfs-server t ...
- Kudu的优点
不多说,直接上干货! Kudu目前具有以下优点 OLAP 工作的快速处理: 与 MapReduce,Spark 和其他 Hadoop 生态系统组件集成: 与 Apache Impala(incuba ...
- VB.NET中的模块
在C#中有“静态类”的概念,自然里边全部的方法都是静态的.这意味着你可以直接通过"类名.方法名"去调用(例如System的Math类就是典型).在VB.NET中,没有“静态类”的概 ...
- [PHP]对象数组和普通数组总结
1.碰到前台将JSON格式数据传递到服务器后台,经php的json_decode函数转换成的数组由于为对象数组,php程序无法对数据进行正常处理的情况,为此需要开发一个PHP回调函数(objarray ...
- nginx+keepalived主辅切换(监控脚本在keepalived.conf中执行)
以前写过一篇,nginx+keepalived 双机互备的文章,写那篇文章的时候没有想过如果apache或者nginx 挂了,而 keepalived 或者 机器没有死,那么主辅是不会切换的,今天就研 ...
- php防止重复提交问题总结
用户提交表单时可能因为网速的原因,或者网页被恶意刷新,致使同一条记录重复插入到数据库中,这是一个比较棘手的问题.我们可以从客户端和服务器端一起着手,设法避免同一表单的重复提交. 1.使用客户端脚本 提 ...
- 前端如何做好SEO优化
https://www.cnblogs.com/weiyf/p/9511021.html 一:什么是SEO? 搜索引擎优化(Search Engine Optimization),简称SEO.是按照搜 ...