A. Kyoya and Colored Balls_排列组合,组合数
Codeforces Round #309 (Div. 1)
2 seconds
256 megabytes
standard input
standard output
Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.
The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.
Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).
The total number of balls doesn't exceed 1000.
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.
3
2
2
1
3
4
1
2
3
4
1680
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
1 2 1 2 3
1 1 2 2 3
2 1 1 2 3
解题报告:
1、可以从后往前思考,先把第n种颜色的,最后一个球放到最后,然后将这个颜色的其余的球随便放,然后将第(n-1)种颜色的球放到,之前放的球的最前一个的前面,递推下去。
2、递推公式:
for(int i=n;i>=;i--)
{
if(cnt[i]==) continue;
ans=(ans*C[c-][cnt[i]-])% mod;
c-=cnt[i];
}
3、组合数递推公式:
void init()
{
memset(C, , sizeof(C));
C[][] = ;
C[][] = C[][] = ;
for(int i = ; i <= ; ++i)
{
C[i][] = C[i][i] = ;
for(int j = ; j < i; ++j)
{
C[i][j] = (C[i-][j-] + C[i-][j]) % mod;
}
}
}
#include <bits/stdc++.h> using namespace std;
typedef long long ll; const int maxn = ;
const ll mod = ;
ll C[maxn][maxn]; void init()
{
memset(C, , sizeof(C));
C[][] = ;
C[][] = C[][] = ;
for(int i = ; i <= ; ++i)
{
C[i][] = C[i][i] = ;
for(int j = ; j < i; ++j)
{
C[i][j] = (C[i-][j-] + C[i-][j]) % mod;
}
}
} int cnt[maxn]; int main()
{ init();
int n;
int c = ;
ll ans = ;
scanf("%d", &n);
for(int i = ; i <= n; i++)
{
scanf("%d", &cnt[i]);
c += cnt[i];
} for(int i = n; i >= ; i--)
{
if(cnt[i] == ) continue;
ans = (ans * C[c-][cnt[i]-]) % mod;
c -= cnt[i];
} cout << ans << endl; return ;
}
A. Kyoya and Colored Balls_排列组合,组合数的更多相关文章
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合
C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- 554C - Kyoya and Colored Balls
554C - Kyoya and Colored Balls 思路:组合数,用乘法逆元求. 代码: #include<bits/stdc++.h> using namespace std; ...
- Codeforces A. Kyoya and Colored Balls(分步组合)
题目描述: Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- Kyoya and Colored Balls(组合数)
Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces554 C Kyoya and Colored Balls
C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...
- HDU 1521 排列组合 指数型母函数
排列组合 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status D ...
- UVaLive 7360 Run Step (排列组合,枚举)
题意:给定一个数 n ,表示一共有 n 步,然后你可以迈一步也可以迈两步,但是左腿和右腿的一步和两步数要一样,并且两步数不小于一步数,问你有多少种方式. 析:虽然是排列组合,但还是不会做.....水啊 ...
- 【CF521C】【排列组合】Pluses everywhere
Vasya is sitting on an extremely boring math class. To have fun, he took a piece of paper and wrote ...
随机推荐
- eclipse_project
转!java web项目 build path 导入jar包,tomcat启动报错 找不到该类 在eclipse集成tomcat开发java web项目时,引入的外部jar包,编译通过,但启动tomc ...
- Hive学习(一)
https://www.cnblogs.com/qingyunzong/p/8707885.html http://www.360doc.com/content/16/1006/23/15257968 ...
- tomcat异常[0]--java.lang.ClassNotFoundException: org.apache.taglibs.standard.tlv.JstlCoreTLV
自己建了一个项目,启动项目的时候,发生了java.lang.ClassNotFoundException: org.apache.taglibs.standard.tlv.JstlCoreTLV异常. ...
- 性能测试工具LoadRunner16-LR之Controller 负载运行时设置
- LitJson(读Exce文件写入到json文件):
读Exce文件写入到json文件汇总: //命名空间 using System.Collections; using System.Collections.Generic; using System. ...
- Murano Weekly Meeting 2015.11.04
Meeting time: 2015.November.4th 1:00~2:00 Chairperson: Serg Melikyan, PTL from Mirantis Meeting sum ...
- (转)DB2 8.2 for aix5L安装和配置步骤
DB2 8.2 for aix5L安装和配置步骤[@more@] AIX5.2上安装DB2 V8.2安装平台:IBM eserver,AIX 5.3 64位 一 删除以有的DB2系统: 1.停止DB2 ...
- Kudu和HBase定位的区别
不多说,直接上干货! Kudu和HBase定位的区别 Kudu 的定位是提供 “ast analytics on fast data” ,也就是在快速更新的数据上进行快速的查询.它定位 OLAP 和少 ...
- 读<<programming ruby>> 7.6节 flip-flop 理解
书中源码是这样的 File.foreach('1.txt') do |x| if(($. == 1) || x =~ /eig/) .. (($. == 3) || x =~ /nin/) then ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...