以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标.常见CV的方法如下:
1).Hold-Out Method
将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此Hold-OutMethod下分类器的性能指标.此种方法的好处的处理简单,只需随机把原始数据分为两组即可,其实严格意义来说Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性.
 
2).K-fold Cross Validation(记为K-CV)
 
将原始数据分成K组(一般是均分),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型,用这K个模型最终的验证集的分类准确率的平均数作为此K-CV下分类器的性能指标.K一般大于等于2,实际操作时一般从3开始取,只有在原始数据集合数据量小的时候才会尝试取2.K-CV可以有效的避免过学习以及欠学习状态的发生,最后得到的结果也比较具有说服性.
3).Leave-One-Out Cross Validation(记为LOO-CV)
如果设原始数据有N个样本,那么LOO-CV就是N-CV,即每个样本单独作为验证集,其余的N-1个样本作为训练集,所以LOO-CV会得到N个模型,用这N个模型最终的验证集的分类准确率的平均数作为此下LOO-CV分类器的性能指标.相比于前面的K-CV,LOO-CV有两个明显的优点:

a.每一回合中几乎所有的样本皆用于训练模型,因此最接近原始样本的分布,这样评估所得的结果比较可靠。

b.实验过程中没有随机因素会影响实验数据,确保实验过程是可以被复制的。
但LOO-CV的缺点则是计算成本高,因为需要建立的模型数量与原始数据样本数量相同,当原始数据样本数量相当多时,LOO-CV在实作上便有困难几乎就是不显示,除非每次训练分类器得到模型的速度很快,或是可以用并行化计算减少计算所需的时间.

交叉验证(Cross Validation)方法思想简介的更多相关文章

  1. 交叉验证(Cross Validation)原理小结

    交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...

  2. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

  3. 交叉验证(CrossValidation)方法思想简介[zz]

    以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train se ...

  4. 验证和交叉验证(Validation & Cross Validation)

    之前在<训练集,验证集,测试集(以及为什么要使用验证集?)(Training Set, Validation Set, Test Set)>一文中已经提过对模型进行验证(评估)的几种方式. ...

  5. 交叉验证(Cross Validation)简介

    参考    交叉验证      交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...

  6. paper 35 :交叉验证(CrossValidation)方法思想

    交叉验证(CrossValidation)方法思想简介 以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(da ...

  7. 交叉验证(CrossValidation)方法

    分类器模型通常在特定的数据上进行训练,由于所得模型可能存在过拟合的现象.因此,模型训练完成之后通常需要进行检验,以验证分类模型在未知数据集上的预测能力,即我们通常所说的"模型泛化" ...

  8. ml交叉验证

    https://blog.csdn.net/guanyuqiu/article/details/86006474 https://blog.csdn.net/weixin_42660173/artic ...

  9. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

随机推荐

  1. ShardingJDBC(一)-转载

    Sharding-JDBC:垂直拆分怎么做? 原创: 尹吉欢 猿天地 今天 经过读写分离的优化后,小王可算是轻松了一段时间,读写分离具体的方案请查看这篇文章:Sharding-JDBC:查询量大如何优 ...

  2. thinkphp5.1使用支付宝接口(沙箱环境)

    接口文件以及沙箱的测试账号可以去支付宝开发中心获取,下面给出一个简单地例子 我新建了一个控制器Pay用来专门做支付 <?phpnamespace app\index\controller; us ...

  3. python排序(冒泡、直接选择、直接插入等)

    冒泡排序 冒泡法:第一趟:相邻的两数相比,大的往下沉.最后一个元素是最大的. 第二趟:相邻的两数相比,大的往下沉.最后一个元素不用比. #冒泡排序 array = [1,5,6,2,9,4,3] de ...

  4. pat1098. Insertion or Heap Sort (25)

    1098. Insertion or Heap Sort (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  5. MySQL分库分表的技巧

    分表是分散数据库压力的好方法. 分表,最直白的意思,就是将一个表结构分为多个表,然后,可以再同一个库里,也可以放到不同的库. 当然,首先要知道什么情况下,才需要分表.个人觉得单表记录条数达到百万到千万 ...

  6. MVVM技术 - 的实现 @{}来进行 调用那个 DataBinding方法

    new Material Design 支持哭 还有 Data Binding 结束   使用DataBindign 结束 我们很方面的实现 MVVM设计模式   什么是MVVM model 呢.   ...

  7. 从零开始的全栈工程师——js篇2.15(offsetLeft)

    元素的属性 Div.attributes 是所有标签属性构成的数据集合 Div.classList 是所有class名构成的数组集合 在classList的原型链上看以看到add()和remove() ...

  8. 从零开始的全栈工程师——html篇1.8(知识点补充与浏览器兼容性)

    知识点补充 一.浏览器的兼容问题(关于浏览器的兼容问题 有很多大佬已经解释的很清楚了 这个得自己百度去多花点时间去了解 这里咱们只说一下前面的漏点) 浏览器兼容性问题又被称为网页兼容性或网站兼容性问题 ...

  9. CSS单词换行and断词,你真的完全了解吗

    背景 某天老板在群里反馈,英文单词为什么被截断了? 很显然,这是我们前端的锅,自行背锅.这个问题太简单了,css里加两行属性,分分钟搞定. 开心的提交代码,刷新页面.我擦,怎么还是没有断词?不可能啊! ...

  10. vue中background-image图片路径问题

    按照以往在css文件中写background:url('图片路径'),完成后加载竟然显示出错,起初以为路径不对,检查了几遍,仍然没有问题.最后百度找答案,发现不少同行都遇到过这种问题,遂记录下自己所采 ...