以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set),首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标.常见CV的方法如下:
1).Hold-Out Method
将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此Hold-OutMethod下分类器的性能指标.此种方法的好处的处理简单,只需随机把原始数据分为两组即可,其实严格意义来说Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性.
 
2).K-fold Cross Validation(记为K-CV)
 
将原始数据分成K组(一般是均分),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型,用这K个模型最终的验证集的分类准确率的平均数作为此K-CV下分类器的性能指标.K一般大于等于2,实际操作时一般从3开始取,只有在原始数据集合数据量小的时候才会尝试取2.K-CV可以有效的避免过学习以及欠学习状态的发生,最后得到的结果也比较具有说服性.
3).Leave-One-Out Cross Validation(记为LOO-CV)
如果设原始数据有N个样本,那么LOO-CV就是N-CV,即每个样本单独作为验证集,其余的N-1个样本作为训练集,所以LOO-CV会得到N个模型,用这N个模型最终的验证集的分类准确率的平均数作为此下LOO-CV分类器的性能指标.相比于前面的K-CV,LOO-CV有两个明显的优点:

a.每一回合中几乎所有的样本皆用于训练模型,因此最接近原始样本的分布,这样评估所得的结果比较可靠。

b.实验过程中没有随机因素会影响实验数据,确保实验过程是可以被复制的。
但LOO-CV的缺点则是计算成本高,因为需要建立的模型数量与原始数据样本数量相同,当原始数据样本数量相当多时,LOO-CV在实作上便有困难几乎就是不显示,除非每次训练分类器得到模型的速度很快,或是可以用并行化计算减少计算所需的时间.

交叉验证(Cross Validation)方法思想简介的更多相关文章

  1. 交叉验证(Cross Validation)原理小结

    交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...

  2. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

  3. 交叉验证(CrossValidation)方法思想简介[zz]

    以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train se ...

  4. 验证和交叉验证(Validation & Cross Validation)

    之前在<训练集,验证集,测试集(以及为什么要使用验证集?)(Training Set, Validation Set, Test Set)>一文中已经提过对模型进行验证(评估)的几种方式. ...

  5. 交叉验证(Cross Validation)简介

    参考    交叉验证      交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...

  6. paper 35 :交叉验证(CrossValidation)方法思想

    交叉验证(CrossValidation)方法思想简介 以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(da ...

  7. 交叉验证(CrossValidation)方法

    分类器模型通常在特定的数据上进行训练,由于所得模型可能存在过拟合的现象.因此,模型训练完成之后通常需要进行检验,以验证分类模型在未知数据集上的预测能力,即我们通常所说的"模型泛化" ...

  8. ml交叉验证

    https://blog.csdn.net/guanyuqiu/article/details/86006474 https://blog.csdn.net/weixin_42660173/artic ...

  9. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

随机推荐

  1. 用户与授权:MySQL系列之六

    一.用户管理 1.用户账号 用户的账号由用户名和HOST俩部分组成('USERNAME'@'HOST') HOST的表示: 主机名 具体IP地址 网段/掩码 可以使用通配符表示,%和_:192.168 ...

  2. chapter05_20180330

    // 5.7 主构造器// 主构造器的参数直接旋转在类名之后class Person57(val name: String, val age: Int) { // 上边()中的内容就是主构造器的参数} ...

  3. Java面向对象_简单工厂模式

    概念:由一个工厂对象决定创建出哪一种产品类的实例. public class Practice14 { public static void main(String[] args) { // TODO ...

  4. JVM基础知识2 垃圾收集器与内存分配策略

    如何判断堆中的哪些对象可以被回收 主流的程序语言都是使用根搜索算法(GC Roots Tracing)判定对象是否存活 基本思路是:通过一系列名为“GC Roots”的对象作为起点,从这些节点开始向下 ...

  5. Linux Shell 中数组的语法及应用

    #!/bin/sh## 数组的声明与初始化方法# 先声明后赋值:declare -a arrayarray=(one two three) # 声明并初始化:array_1=(1 2 3 four) ...

  6. Java日志格式应该是占位符还是字符串拼接

    背景 ​ 上次在群中,有个群友说自己把所有项目中,所有使用占位符打印日志的方式都修改成为了字符串拼接的方式,因为他曾经看了一篇文章,说字符串拼接的形式比占位符形式的性能更好,这个话题引起了大家的广泛讨 ...

  7. 《从0到1学习Flink》—— Flink 写入数据到 Kafka

    前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用 ...

  8. 打印流-PrintStream

    打印流-PrintStream java.io.PrintStream为其他输出流添加了功能,使其他的流能够更方便的打印各种数据值表现形式 PrintStream特点: 1.只负责数据的输入,不负责数 ...

  9. RS485相关学习

    TIA-485-A (Revision of EIA-485) Standard ANSI/TIA/EIA-485-A-1998Approved: March 3, 1998Reaffirmed: M ...

  10. 内容显示分页数字分页 aspx

    此处是aspx里面分页显示,数据层和业务层是由动软生成 当然,我们也可以可以利用listView实现分页ListView(高效分页) public partial class NewList : Sy ...