【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)
大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置。
列出方程
这一看就是一道解方程题。
我们可以设这个球体的圆心的位置为\((x_1,x_2,..x_n)\),并设每个点到圆心的距离为\(dis\)。
借助题目中给出的公式,我们可以得到以下方程:
\(\begin{cases}\sqrt{(x_1-a_{1,1})^2+(x_2-a_{1,2})^2+...+(x_n-a_{1,n})^2}=dis\\\sqrt{(x_1-a_{2,1})^2+(x_2-a_{2,2})^2+...+(x_n-a_{2,n})^2}=dis\\......\\\sqrt{(x_1-a_{n+1,1})^2+(x_2-a_{n+1,2})^2+...+(x_n-a_{n+1,n})^2}=dis\end{cases}\)
方程的转化
原方程看起来十分麻烦,又有平方,又有开方,很难解,因此我们要将它转化一下。
将方程两边同时平方,可得:
\(\begin{cases}(x_1-a_{1,1})^2+(x_2-a_{1,2})^2+...+(x_n-a_{1,n})^2=dis^2\\(x_1-a_{2,1})^2+(x_2-a_{2,2})^2+...+(x_n-a_{2,n})^2=dis^2\\......\\(x_1-a_{n+1,1})^2+(x_2-a_{n+1,2})^2+...+(x_n-a_{n+1,n})^2=dis^2\end{cases}\)
但是,这些方程全部都是二次方程,好像非常难做。
因此,我们考虑将每个方程展开:
\(\begin{cases}x_1^2-2a_{1,1}x_1+a_{1,1}^2+x_2^2-2a_{1,2}x_2+a_{1,2}^2+...+x_n^2-2a_{1,n}x_n+a_{1,n}^2=dis^2\\x_1^2-2a_{2,1}x_1+a_{2,1}^2+x_2^2-2a_{2,2}x_2+a_{2,2}^2+...+x_n^2-2a_{2,n}x_n+a_{2,n}^2=dis^2\\......\\x_1^2-2a_{n+1,1}x_1+a_{n+1,1}^2+x_2^2-2a_{n+1,2}x_2+a_{n+1,2}^2+...+x_n^2-2a_{n+1,n}x_n+a_{n+1,n}^2=dis^2\\\end{cases}\)
这时候,我们显然可以看出每个方程中左边都有\(x_1^2+x_2^2+...+x_n^2\),右边都有\(dis^2\),不难想到,将第\(1\sim n\)个方程分别减去第\(n+1\)个方程,便可以得到一个新的方程组,而且是一次的:
\(\begin{cases}2(a_{n+1,1}-a_{1,1})·x_1+...+2(a_{n+1,n}-a_{1,n})·x_n=a_{n+1,1}^2-a_{1,1}^2+...+a_{n+1,n}^2-a_{1,n}^2\\2(a_{n+1,1}-a_{2,1})·x_1+...+2(a_{n+1,n}-a_{2,n})·x_n=a_{n+1,1}^2-a_{2,1}^2+...+a_{n+1,n}^2-a_{2,n}^2\\...\\2(a_{n+1,1}-a_{n,1})·x_1+...+2(a_{n+1,n}-a_{n,n})·x_n=a_{n+1,1}^2-a_{n,1}^2+...+a_{n+1,n}^2-a_{n,n}^2\end{cases}\)
由于\(a\)数组是题目中给出的,我们就可以直接高斯消元了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)<0?-(x):(x))
#define LL long long
#define ull unsigned long long
#define N 10
using namespace std;
int n;
namespace Gauss
{
const double eps=1e-10;//eps是一个极小值,防止精度误差
double a[N+5][N+5],s[N+5];
inline void swap(double &x,double &y)
{
double t=x;x=y,y=t;
}
inline void GetData()//将读入的数据转化为方程的系数
{
register int i,j;
for(i=1;i<=n+1;++i) for(j=1;j<=n;++j) scanf("%lf",&a[i][j]);
for(i=1;i<=n;++i) for(s[i]=0,j=1;j<=n;++j)
s[i]+=a[n+1][j]*a[n+1][j]-a[i][j]*a[i][j],a[i][j]=2*(a[n+1][j]-a[i][j]);
}
inline void Find_line(int x)//找到一个行数大于等于x且第x个元素系数不为0的方程,将其移至第x行
{
register int i=x,j;
while(i<=n&&fabs(a[i][x])<eps) ++i;
for(j=1;j<=n;++j) swap(a[x][j],a[i][j]);
}
inline void PrintAns()
{
register int i,j,k;
for(i=1;i<=n;++i)
{
for(Find_line(i),j=i+1;j<=n;++j)//消去[i+1~n]中每一行第i个元素
{
register double delta=-a[j][i]/a[i][i];
for(s[j]+=s[i]*delta,k=i;k<=n;++k) a[j][k]+=a[i][k]*delta;
}
}
for(i=n;i;--i) for(s[i]/=a[i][i],j=i-1;j;--j) s[j]-=a[j][i]*s[i];//计算出第i个未知数的值,并将第i个元素的值代入第1~i-1行的式子中消去第i个未知数
for(i=1;i<=n;++i) printf("%.3lf ",s[i]);//输出每一个未知数的值
}
}
int main()
{
return scanf("%d",&n),Gauss::GetData(),Gauss::PrintAns(),0;
}
【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)的更多相关文章
- BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere
http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...
- bzoj1013 [JSOI2008]球形空间产生器
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...
- BZOJ1013: [JSOI2008]球形空间产生器sphere
传送门 高斯消元练习. 模板: void Guass(){ int waited; up(i,1,N){ waited=i; up(j,i+1,N)if(fabs(M[j][i])>fabs(M ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere[高消]
数论进度开的好慢啊.我整天做的都是什么鬼题啊. 简单的高消题,用一个式子把另外$n$个有二次项和距离的式子全消掉就行了. #include<iostream> #include<cs ...
随机推荐
- AOP常用注解
1.@Aspect 配置切面Bean,和<bean.../>元素进行配置无区别,一样支持依赖注入来配置属性值: 如果启动了Spring的"零配置"特性,一样可以让Spr ...
- poj 2068 Nim
Nim POJ - 2068 题目大意:多组数据,两人轮流操作,n轮一循环,给出总石子数和这n轮每次两人能取的石子上限(下限为1).取到最后一颗者输. /* f[i][j]表示在第i轮中一共有j个石子 ...
- C# Stack堆栈的使用方法
堆栈(Stack)代表了一个后进先出的对象集合.当您需要对各项进行后进先出的访问时,则使用堆栈.当您在列表中添加一项,称为推入元素,当您从列表中移除一项时,称为弹出元素. Stack 类的方法和属性 ...
- linux文件查找find
一.locate locate基于数据库索引来查找文件,数据库在开机时一段时间对更新,不会实时更新,数据库存放在(/var/lib/mlocate/mlocate.db),可以用updatedb来手动 ...
- HDU2048 神、上帝以及老天爷
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2048 看书发现了这道题,刚开始没理解题意,以为是中奖的概率,---> 1/n 后来知道了是典型的错排 ...
- Lecture--9 Sorting
1/排序算法:冒泡排序bubble sort,插入排序 insertion sort,选择排序 selection sort,快速排序 quick sort,归并排序 merge sort;堆排序 h ...
- (转)CentOS 7系统详细开机启动流程和关机流程
CentOS 7系统详细开机启动流程和关机流程 原文:http://blog.csdn.net/yuesichiu/article/details/51350654 名称 bootup - 系统启动流 ...
- 前端三剑客之javascript
前端三剑客之javascript 给个小目录 一.JavaScript介绍 二.ECMAScript(核心) 三.BOM对象(浏览器对象) 四.DOM对象(文档对象模型) 总结: JS的组成: a ...
- SpringBoot的异步调用介绍
参考博客: https://www.cnblogs.com/jebysun/p/9675345.html https://blog.csdn.net/weixin_38399962/article/d ...
- javascript的常用操作(一)
1. 实时监听input的值变化 onchange事件只在键盘或者鼠标操作改变对象属性,且失去焦点时触发,脚本触发无效; 而onkeydown/onkeypress/onkeyup在处理复制.粘贴. ...