【BZOJ2724】[Violet 6]蒲公英 分块+二分
【BZOJ2724】[Violet 6]蒲公英
Description
Input
修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
Output
Sample Input
1 2 3 2 1 2
1 5
3 6
1 5
Sample Output
2
1
HINT
修正下:
n <= 40000, m <= 50000
题解:分块还是练脑子啊~
结论:一个区间的众数要么是区间中一个块的众数,要么是块外的任意一个数。
这就告诉我们需要预处理出任意两个块之间的所有数的众数,这个可以用离散化+桶+扫一遍实现。
那么对于询问[l,r]我们假设其中最大的连续的块是[ll,rr],那么我们已知了[ll,rr]中的众数,如何判断[l,ll),(rr,r]中的数是不是众数呢?
既然已经将所有数离散化了,我们就可以考虑记录每个数出现的位置。我们将每个数出现的位置从左到右用vector存起来,然后查询的时候二分一下,就知道了这个数在[l,r]中出现了多少次,用它来更新答案就行了。
sqrt(n/logn)大法好~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=40010;
int n,m,nm,B,mx,ans;
int v[maxn],st[maxn],ref[maxn];
int s[810][810];
vector<int> pos[maxn];
struct node
{
int org,val;
}num[maxn];
bool cmp(node a,node b)
{
return a.val<b.val;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void query(int a,int b,int x)
{
if(!x||st[x]) return ;
int l=0,r=pos[x].size()-1,mid,c,d;
while(l<r)
{
mid=l+r>>1;
if(pos[x][mid]>=a) r=mid;
else l=mid+1;
}
c=r;
l=0,r=pos[x].size();
while(l<r)
{
mid=l+r>>1;
if(pos[x][mid]<=b) l=mid+1;
else r=mid;
}
d=l-1,st[x]=d-c+1;
if(st[x]>st[mx]||(st[x]==st[mx]&&x<mx)) mx=x;
}
int main()
{
//freopen("bz2724.in","r",stdin);
n=rd(),m=rd();
int i,j,a,b,c,d;
for(i=0;i<n;i++) num[i].val=rd(),num[i].org=i;
sort(num,num+n,cmp);
for(i=0;i<n;i++)
{
if(!i||num[i].val>num[i-1].val) ref[++nm]=num[i].val;
v[num[i].org]=nm;
}
B=int(sqrt(double(n)/log(n)));
for(i=0;i<n;i++) pos[v[i]].push_back(i);
for(i=0;i*B<n;i++)
{
memset(st,0,sizeof(st));
for(mx=0,j=i*B;j<n;j++)
{
st[v[j]]++;
if(st[v[j]]>st[mx]||(st[v[j]]==st[mx]&&v[j]<mx)) mx=v[j];
s[i][j/B]=mx;
}
}
memset(st,0,sizeof(st));
for(i=1;i<=m;i++)
{
a=(rd()+ans-1+n)%n,b=(rd()+ans-1+n)%n;
if(a>b) swap(a,b);
c=a/B,d=b/B;
if(c==d)
{
for(mx=0,j=a;j<=b;j++)
{
st[v[j]]++;
if(st[v[j]]>st[mx]||(st[v[j]]==st[mx]&&v[j]<mx)) mx=v[j];
}
ans=ref[mx],printf("%d\n",ans);
for(j=a;j<=b;j++) st[v[j]]--;
continue;
}
mx=0,query(a,b,s[c+1][d-1]);
for(j=a;j<c*B+B;j++) query(a,b,v[j]);
for(j=d*B;j<=b;j++) query(a,b,v[j]);
ans=ref[mx],printf("%d\n",ans);
st[s[c+1][d-1]]=0;
for(j=a;j<c*B+B;j++) st[v[j]]=0;
for(j=d*B;j<=b;j++) st[v[j]]=0;
}
return 0;
}
【BZOJ2724】[Violet 6]蒲公英 分块+二分的更多相关文章
- BZOJ2724 [Violet 6]蒲公英 分块
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...
- bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式
这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...
- [BZOJ2724][Violet 6]蒲公英
[BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- bzoj2724: [Violet 6]蒲公英(分块)
传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...
- 【bzoj2724】[Violet 6]蒲公英 分块+STL-vector
题目描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 样例输入 6 3 1 2 3 2 1 2 1 5 3 ...
- 【分块】bzoj2724 [Violet 6]蒲公英
分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...
- bzoj2724: [Violet 6]蒲公英(离散化+分块)
我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...
- BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]
传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...
随机推荐
- 怎样从server获取图片
今天写了安卓程序与server通信.当中须要从server获取图片.本来以为下载流.处理文件流非常复杂.结果几句话就轻松搞定了.如今记在这里. // (2014.5.1第一种方法)通过server返回 ...
- ios--计时器演示样例:一闪一闪亮晶晶(动画)
本演示样例实现的动画:UIView定时消失随后又闪现,即一闪一闪的动画 所採用的技术:定时器(NSTimer) + 动画(beginAnimations/commitAnimations) 详细实现步 ...
- Linux操作系统实时性分析
1. 概述 选择一个合适的嵌入式操作系统,可以考虑以下几个因素: 第一是应用.如果你想开发的嵌入式设备是一个和网络应用密切相关或者就是一个网络设备,那么你应该选择用嵌入式Linux或者uCLinux ...
- iptables利用connlimit模块限制同一IP连接数
connlimit功能: connlimit模块允许你限制每个客户端IP的并发连接数,即每个IP同时连接到一个服务器个数. connlimit模块主要可以限制内网用户的网络使用,对服务器而言则可以限制 ...
- androidmanifest
在unity里面这个androidmanifest.xml 就相当于 buildsetting 里面的playersettings
- c++11 std::prev、std::next、std::advance与auto 使用
auto 定义变量时放在变量前,无需知道具体变量类型,系统可自行推断类型,减少编程工作,特别是在模板使用时,使用更方便. 下面简单例子: auto a=; auto b='a'; auto s=&qu ...
- shell通配符、命令代换、引号
1.通配符 (1)* :匹配多个任意字符 (2)? :匹配一个任意字符 (3)[若干字符] :匹配方括号中任意一个字符的一次出现 2.命令代换:反引号``或者$() 例1:vim test_th.sh ...
- Angular 学习笔记——$http
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...
- synchronized的功能拓展:重入锁(读书笔记)
重入锁可以完全代替synchronized关键字.在JDK5.0的早期版本中,重入锁的性能远远好于synchronized,但是从JDK6.0开始.JDK在synchronized上做了大量的优化. ...
- modal html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...