【BZOJ2724】[Violet 6]蒲公英

Description

Input

修正一下

l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1

Output

Sample Input

6 3
1 2 3 2 1 2
1 5
3 6
1 5

Sample Output

1
2
1

HINT

修正下:

n <= 40000, m <= 50000

题解:分块还是练脑子啊~

结论:一个区间的众数要么是区间中一个块的众数,要么是块外的任意一个数。

这就告诉我们需要预处理出任意两个块之间的所有数的众数,这个可以用离散化+桶+扫一遍实现。

那么对于询问[l,r]我们假设其中最大的连续的块是[ll,rr],那么我们已知了[ll,rr]中的众数,如何判断[l,ll),(rr,r]中的数是不是众数呢?

既然已经将所有数离散化了,我们就可以考虑记录每个数出现的位置。我们将每个数出现的位置从左到右用vector存起来,然后查询的时候二分一下,就知道了这个数在[l,r]中出现了多少次,用它来更新答案就行了。

sqrt(n/logn)大法好~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=40010;
int n,m,nm,B,mx,ans;
int v[maxn],st[maxn],ref[maxn];
int s[810][810];
vector<int> pos[maxn];
struct node
{
int org,val;
}num[maxn];
bool cmp(node a,node b)
{
return a.val<b.val;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void query(int a,int b,int x)
{
if(!x||st[x]) return ;
int l=0,r=pos[x].size()-1,mid,c,d;
while(l<r)
{
mid=l+r>>1;
if(pos[x][mid]>=a) r=mid;
else l=mid+1;
}
c=r;
l=0,r=pos[x].size();
while(l<r)
{
mid=l+r>>1;
if(pos[x][mid]<=b) l=mid+1;
else r=mid;
}
d=l-1,st[x]=d-c+1;
if(st[x]>st[mx]||(st[x]==st[mx]&&x<mx)) mx=x;
}
int main()
{
//freopen("bz2724.in","r",stdin);
n=rd(),m=rd();
int i,j,a,b,c,d;
for(i=0;i<n;i++) num[i].val=rd(),num[i].org=i;
sort(num,num+n,cmp);
for(i=0;i<n;i++)
{
if(!i||num[i].val>num[i-1].val) ref[++nm]=num[i].val;
v[num[i].org]=nm;
}
B=int(sqrt(double(n)/log(n)));
for(i=0;i<n;i++) pos[v[i]].push_back(i);
for(i=0;i*B<n;i++)
{
memset(st,0,sizeof(st));
for(mx=0,j=i*B;j<n;j++)
{
st[v[j]]++;
if(st[v[j]]>st[mx]||(st[v[j]]==st[mx]&&v[j]<mx)) mx=v[j];
s[i][j/B]=mx;
}
}
memset(st,0,sizeof(st));
for(i=1;i<=m;i++)
{
a=(rd()+ans-1+n)%n,b=(rd()+ans-1+n)%n;
if(a>b) swap(a,b);
c=a/B,d=b/B;
if(c==d)
{
for(mx=0,j=a;j<=b;j++)
{
st[v[j]]++;
if(st[v[j]]>st[mx]||(st[v[j]]==st[mx]&&v[j]<mx)) mx=v[j];
}
ans=ref[mx],printf("%d\n",ans);
for(j=a;j<=b;j++) st[v[j]]--;
continue;
}
mx=0,query(a,b,s[c+1][d-1]);
for(j=a;j<c*B+B;j++) query(a,b,v[j]);
for(j=d*B;j<=b;j++) query(a,b,v[j]);
ans=ref[mx],printf("%d\n",ans);
st[s[c+1][d-1]]=0;
for(j=a;j<c*B+B;j++) st[v[j]]=0;
for(j=d*B;j<=b;j++) st[v[j]]=0;
}
return 0;
}

【BZOJ2724】[Violet 6]蒲公英 分块+二分的更多相关文章

  1. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  2. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  3. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  4. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  5. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  6. 【bzoj2724】[Violet 6]蒲公英 分块+STL-vector

    题目描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 样例输入 6 3 1 2 3 2 1 2 1 5 3 ...

  7. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

  8. bzoj2724: [Violet 6]蒲公英(离散化+分块)

    我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...

  9. BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]

    传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...

随机推荐

  1. ARCGIS FLEX API加载google地图、百度地图、天地图(转)

    http://www.cnblogs.com/chenyuming507950417/ Flex加载google地图.百度地图以及天地图作底图 一  Flex加载Google地图作底图 (1)帮助类G ...

  2. 对中级 Linux 用户非常有用的 20 个命令

    FROM:http://www.oschina.net/translate/20-advanced-commands-for-middle-level-linux-users 21. 命令: Find ...

  3. iptables 的学习资源

    慕课网:https://www.imooc.com/video/7617 马哥linux视频:http://edu.51cto.com//center/course/lesson/index?id=9 ...

  4. 转:mybatis3中@SelectProvider的使用技巧

    mybatis3中@SelectProvider的使用技巧 mybatis的原身是ibatis,现在已经脱离了apache基金会,新官网是http://www.mybatis.org/. mybati ...

  5. java.lang.IllegalArgumentException: Wrong state classs

    java.lang.IllegalArgumentException: Wrong state class, expecting View State but received class cn.et ...

  6. python数据类型整理

    Python中常见的数据结构可以统称为容器(container).序列(如列表和元组).映射(如字典)以及集合(set)是三类主要的容器. 一.序列(列表.元组和字符串) 序列中的每个元素都有自己的编 ...

  7. requestAnimationFrame 使用

    1.概述 参考网址:https://developer.mozilla.org/zh-CN/docs/Web/API/Window/requestAnimationFrame window.reque ...

  8. 用组合取代继承能为 Activity 带来什么

    用组合取代继承能为 Activity 带来什么 原文链接 : Composition over Inheritance,What it means for your Activities 原文作者 : ...

  9. Android Shader 颜色、图像渲染 paint.setXfermode

    Shader Shader是一个基类,表示在绘制期间颜色的水平跨度 它的子类被嵌入在Paint中使用,调用paint.setShader(shader). 除Bitmap外的其他对象,使用该Paint ...

  10. JUnit编写单元测试代码注意点小结

    用eclipse编写单元测试的时候,可以直接选中某个类,然后右键new新疆一个junit case,界面如下图1所示: 图1:新建test case 选 择图1中的JUnit Test Case,然后 ...