BZOJ2875 [Noi2012]随机数生成器 【矩阵乘法 + 快速乘】
题目
栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Me
thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机
数X[n]X[n+1]=(aX[n]+c)mod m其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数
总是由上一个数生成的。用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C+
+和Pascal的产生随机数的库函数使用的也是这种方法。栋栋知道这样产生的序列具有良好的随机性,不过心急的
他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,…,g-1之间的,他需要将X[n]除以g取余得到他想要
的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。
输入格式
6个用空格分割的整数m,a,c,X[0],n和g,其中a,c,X[0]是非负整数,m,n,g是正整数。
g<=10^8
对于所有数据,n>=1,m>=1,a>=0,c>=0,X[0]>=0,g>=1。
输出格式
输出一个数,即X[n] mod g
输入样例
11 8 7 1 5 3
输出样例
2
提示
【样例说明】
计算得X[n]=X[5]=8,故(X[n] mod g) = (8 mod 3) = 2
题解
按题意矩阵乘法
乘法会爆long long,要用快速乘
快速乘有点像快速幂,化为二进制,乘法化加法防止溢出
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
LL N,M,G,A,C,X;
struct Matrix{
LL s[2][2],n,m;
Matrix(){s[0][0] = s[0][1] = s[1][1] = s[1][0] = n = m = 0;}
}T,F0;
LL mult(LL t,LL k){
LL f = 0;
for (; k; k >>= 1,t = (t + t) % M) if (k & 1) f = (f + t) % M;
return f;
}
Matrix operator *(const Matrix& a,const Matrix& b){
Matrix ans;
if (a.m != b.n) return ans;
ans.n = a.n; ans.m = b.m;
for (int i = 0; i < ans.n; i++)
for (int j = 0; j < ans.m; j++)
for (int k = 0; k < a.m; k++)
ans.s[i][j] = (ans.s[i][j] + mult(a.s[i][k],b.s[k][j])) % M;
return ans;
}
Matrix qpow(Matrix a,LL b){
Matrix ans; ans.n = ans.m = a.n;
for (int i = 0; i < ans.n; i++) ans.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) ans = ans * a;
return ans;
}
int main(){
cin>>M>>A>>C>>X>>N>>G;
T.n = T.m = 2;
T.s[0][0] = A; T.s[0][1] = 1; T.s[1][0] = 0; T.s[1][1] = 1;
F0.n = 2; F0.m = 1; F0.s[0][0] = X; F0.s[1][0] = C;
Matrix F = qpow(T,N) * F0;
LL ans = (F.s[0][0] % M + M) % M;
cout<<ans % G<<endl;
return 0;
}
BZOJ2875 [Noi2012]随机数生成器 【矩阵乘法 + 快速乘】的更多相关文章
- BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘
题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...
- Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)
2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2052 Solved: 1118 Description ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
- [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂
好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...
- [NOI2012]随机数生成器 矩阵乘法
Code: #include<cstdio> #include<algorithm> #include<iostream> #include<cstring& ...
- BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )
矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...
- bzoj2875: [Noi2012]随机数生成器
矩阵乘法. x[n] = {x[0],1} * ( {a,0} ^ n ) {b,1} 写成这样谁能看懂.... noi里的大水题.我居然 #include<cstdio> #includ ...
- [luogu2044][NOI2012] 随机数生成器 [矩阵快速幂]
题面: 传送门 思路: 看一眼这个公式: $x\left[n+1\right]=\left(a\ast x\left[n\right]+c\right) mod m$ 递推,数据范围$n\leq 10 ...
- 矩阵(快速幂):COGS 963. [NOI2012] 随机数生成器
963. [NOI2012] 随机数生成器 ★★ 输入文件:randoma.in 输出文件:randoma.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] 栋 ...
随机推荐
- 时间复杂度 log n
时间复杂度 O(log n) 意味着什么? 预先知道算法的复杂度是一回事,了解其后的原理是另一件事情. 不管你是计算机科班出身还是想有效解决最优化问题,如果想要用自己的知识解决实际问题,你都必须理解时 ...
- Delphi 编写DLL动态链接库文件的知识
一.DLL动态链接库文件的知识简介: Windows的发展要求允许同时运行的几个程序共享一组函数的单一拷贝.动态链接库就是在这种情况下出现的.动态链接库不用重复编译或链接,一旦装入内存,Dlls函数可 ...
- Java自定义异常信息
通常在开发过程中,会遇到很多异常,对于一些知道异常的原因,这时候想要返回给浏览器,就需要自定义系统的异常 1.Spring 注入异常处理类 <bean id ="commonExce ...
- JIRA 6.3的那些事(1):linux环境安装
一直以来,自认为对JIRA是还算比较熟悉 从3.x 就开始使用,然后用4.x 近期公司对BUG系统进行选型: 我极力推荐JIRA ! 然后,JIRA 的安装.部署.配置任务就给到我了: 本以为应该是 ...
- ofbiz最新版13.07.01环境搭建、安装(linux环境下)
一.软件必备: 1.jdk1.7 2.mysql5.6 3.安装tomcat 二.安装: 1.安装 JDK1.7 2.安装mysql数据库 3.下载apache-ofbiz-13.07.01.zip ...
- 搭建Maven私有仓库
Nexus官网下载:Nexus Repository Manager OSS :https://www.sonatype.com/download-oss-sonatype 1.解压 $ tar -z ...
- lnamp高性能架构之apache和nginx的整合
搭建过lamp博友和lnmp的博友们可能对这这两个单词并不陌生,对与apachen,nginx相比都源码或yum安装过,但知道apache的nginx的优点,apache处理动态页面很强,nginx处 ...
- Spring使用mutipartFile上传文件报错【Failed to instantiate [org.springframework.web.multipart.MultipartFile]】
报错场景: 使用SSM框架实现文件上传时报“Failed to instantiate [org.springframework.web.multipart.MultipartFile]”错,控制器源 ...
- Android 内嵌 HTML5 并进行交互
Android与HTML5的交互主要是两个部分, 与HTML5的交互以及与JavaScript的交互, 与HTML5的交互可以通过注册onclick事件转化为与JavaScript的交互 Androi ...
- python基础之布尔运算、集合
布尔值 True 真 False 假 所有的数据类型都自带布尔值,数据只有在0,None和空的时候为False. print(bool()) print(bool()) print(bool('')) ...