挺有趣的恩:洛谷P2155

在纸上打打草稿,写出n!个数,从先往后,遇到不互质的就筛掉——发现一个奇妙的性质!:筛掉的次数、顺序好像是周期性出现的呢~

而且更加妙妙的是,好像还是m!一轮..那么因为n!一定能被m!整除,所以问题转变为:(n!\m! - 有多少个循环节)*(φ(m))。

接下来,φ(m) = m!*(1 - 1/p1)*(1 - 1/p2)...任务就只剩下打出阶乘表&逆元啦。离线的处理会快很多。

#include <bits/stdc++.h>
using namespace std;
#define maxn 10000050
#define ll long long
#define int long long
int maxx, now = , P, T, tot, inv[maxn], ans[], pri[maxn],fac_a[maxn], fac_b[maxn], fac_c[maxn];
bool is_prime[maxn];
struct query
{
int n, m, id, pri;
}Q[]; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} bool cmp1(query a, query b)
{
return a.m < b.m;
} int Get_Pri(int n)
{
for(int i = ; i <= n; i ++)
{
if(!is_prime[i])
{
pri[++ tot] = i;
while(now <= T && pri[tot] > Q[now].m)
{
Q[now].pri = tot - ;
now ++;
}
}
while(now <= T && i == n)
{
Q[now].pri = tot;
now ++;
}
for(int j = ; j <= tot; j ++)
{
if(i * pri[j] > n) break;
is_prime[i * pri[j]] = ;
if(!(i % pri[j])) break;
}
}
} int Get_fac(int n)
{
fac_a[] = fac_a[] = fac_b[] = fac_b[] = fac_c[] = fac_c[] = ;
inv[] = inv[] = ;
for(int i = ; i <= n; i ++)
{
fac_a[i] = (fac_a[i - ] * i) % P;
inv[i] = ((P - P / i) * inv[P % i]) % P;
}
for(int i = ; i <= tot; i ++)
{
fac_b[i] = inv[pri[i]];
fac_b[i] = (fac_b[i] * fac_b[i - ]) % P;
fac_c[i] = pri[i] - ;
fac_c[i] = (fac_c[i] * fac_c[i - ]) % P;
}
} signed main()
{
T = read(), P = read();
for(int i = ; i <= T; i ++)
{
Q[i].n = read(), Q[i].m = read(), Q[i].id = i;
maxx = max(maxx, max(Q[i].n, Q[i].m));
}
sort(Q + , Q + + T, cmp1);
Get_Pri(maxx);
Get_fac(maxx);
for(int i = ; i <= T; i ++)
ans[Q[i].id] = ((fac_a[Q[i].n] * fac_b[Q[i].pri]) % P * fac_c[Q[i].pri]) % P;
for(int i = ; i <= T; i ++)
printf("%lld\n", ans[i]);
return ;
}

【题解】SDOI2008莎拉公主的困惑的更多相关文章

  1. 【bzoj题解】2186 莎拉公主的困惑

    题目传送门. 题意:求\([1,n!]\)中与\(m!\)互质的数的个数,对质数\(R\)取模,\(n\geq m\). 答案应该等于\(\frac{n!}{m!}\phi(m!)=\frac{n!} ...

  2. [BZOJ 2186][SDOI 2008] 莎拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 4519  Solved: 1560[Submit][S ...

  3. 莎拉公主的困惑(bzoj 2186)

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  4. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  5. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  6. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  7. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  8. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  9. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

随机推荐

  1. jquery如何获取对应表单元素?

    问题描述:我页面中有这样多个表单,我都是这个定义的,当我点击确定按钮时,此时能够获得相对应的表单对象,我该怎么获取到他的两个值呢? 解决方案: 页面元素 <form id="form1 ...

  2. C#在textBox中输出一个数组

    //将数组输出到文本框测试 for(i=0;i<arr.Length-1;i++){ this.textBox1.Text=this.textBox1.Text+arr[i]; }

  3. 微信小程序缓存

    购物车数据加入缓存,相同的商品值修改数量,然后再次加入缓存中 修改购物车的数据的时候同理,都是修改缓存数据然后加入到缓存中. 具体的使用方法看官方文档,我只是提供思路

  4. PHP 进阶篇:面向对象的设计原则,自动加载类,类型提示,traits,命名空间,spl的使用,反射的使用,php常用设计模式 (麦子学员 第三阶段)

    以下是进阶篇的内容:面向对象的设计原则,自动加载类,类型提示,traits,命名空间,spl的使用,反射的使用,php常用设计模式 ================================== ...

  5. 列表排序之NB三人组附加一个希尔排序

    NB三人组之 快速排序 def partition(li, left, right): tmp = li[left] while left < right: while left < ri ...

  6. centos 7 关闭IPtables

    systemctl status iptables.service systemctl stopiptables.service

  7. XML文件中关键字自动提示和不全配置

    一.获得mybatis-3-config.dtd.mybatis-3-mapper.dtd 这两个文件. 建立一个Maven的项目 在Pom.xml文件中的Mybatis jar包的下载设置(也可以从 ...

  8. Python:正则表达式—— re 模块

    一.什么是正则表达式(Regular Expression) 正则表达式本身是一种小型的.高度专业化的编程语言,它内嵌在Python中,并通过 re(regular expression)模块实现.使 ...

  9. Android 上能提高学习工作效率的应用

    在知乎上有朋友问 Android 上能提高学习.工作效率的应用有哪些?我给他们的推荐获得了最多赞同.以后会不断完善更新此贴. Any.do :规划日程,各平台都有. Evernote:记笔记,各平台都 ...

  10. Django admin源码剖析

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...