【BZOJ1976】[BeiJing2010组队]能量魔方 Cube

Description

小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量。 能量魔方是一个 N*N*N 的立方体,一共用 N3 个空格可以填充能量水晶。 能量水晶有两种: ·一种是正能量水晶(Positive) ·一种是负能量水晶(Negative) 当这个魔方被填满后,就会依据填充的能量水晶间的关系产生巨大能量。对 于相邻两(相邻就是拥有同一个面)的两个格子,如果这两个格子填充的是一正一 负两种水晶,就会产生一单位的能量。而整个魔方的总能量,就是这些产生的能 量的总和。 现在,小 C 已经在魔方中填充了一些水晶,还有一些位置空着。他想知道, 如果剩下的空格可以随意填充,那么在最优情况下,这个魔方可以产生多少能量。

Input

第一行包含一个数N,表示魔方的大小。 接下来 N2 行,每行N个字符,每个字符有三种可能: P:表示此方格已经填充了正能量水晶; N:表示此方格已经填充了负能量水晶; ?:表示此方格待填充。 上述 N*N 行,第(i-1)*N+1~i*N 行描述了立方体第 i 层从前到后,从左到右的 状态。且每 N 行间,都有一空行分隔。

Output

仅包含一行一个数,表示魔方最多能产生的能量

Sample Input

2
P?
??
??
N?

Sample Output

9

HINT

如下状态时,可产生最多的能量。 
PN 
NP 
NP 
NN 
【数据规模】 
10% 的数据N≤3; 
30% 的数据N≤4; 
80% 的数据N≤10; 
100% 的数据N≤40。

题解:经典的最小割模型,只不过变成了三维的。先黑白染色,然后黑色的点翻转源汇,具体方法:

1.S ->i 容量为i周围已确定的N个数
2.i -> T 容量为i周围已确定的P个数
上面2条边要翻转源汇
3.i <-> j 容量1

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,ans,cnt,tot,S,T;
int dx[]={0,0,0,0,1,-1},dy[]={0,0,1,-1,0,0},dz[]={1,-1,0,0,0,0};
int map[50][50][50],to[2000000],next[2000000],val[2000000],d[100000],head[100000];
char str[50];
queue<int> q;
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i]) if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
return mf-temp;
}
int bfs()
{
while(!q.empty()) q.pop();
memset(d,0,sizeof(d));
int i,u;
q.push(S),d[S]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
inline void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
int i,j,k,l,x,y,z,a,b,c;
scanf("%d",&n);
S=0,T=tot=1;
for(i=1;i<=n;i++) for(j=1;j<=n;j++)
{
scanf("%s",str+1);
for(k=1;k<=n;k++)
{
if(str[k]=='P') map[i][j][k]=1;
if(str[k]=='N') map[i][j][k]=0;
if(str[k]=='?') map[i][j][k]=++tot;
}
}
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) for(j=1;j<=n;j++) for(k=1;k<=n;k++)
{
if(map[i][j][k]>1)
{
a=b=0,c=map[i][j][k];
for(l=0;l<6;l++)
{
x=i+dx[l],y=j+dy[l],z=k+dz[l];
if(x&&y&&z&&x<=n&&y<=n&&z<=n)
{
if(map[x][y][z]==0) b++;
if(map[x][y][z]==1) a++;
if(map[x][y][z]>1&&((i^j^k)&1)) add(c,map[x][y][z],1),add(map[x][y][z],c,1),ans++;
}
}
if((i^j^k)&1) swap(a,b);
add(S,c,a),add(c,T,b),ans+=a+b;
}
if(map[i][j][k]==0)
{
for(l=0;l<6;l++)
{
x=i+dx[l],y=j+dy[l],z=k+dz[l];
if(x&&y&&z&&x<=n&&y<=n&&z<=n&&map[x][y][z]==1) ans++;
}
}
}
while(bfs()) ans-=dfs(S,1<<30);
printf("%d",ans);
return 0;
}

【BZOJ1976】[BeiJing2010组队]能量魔方 Cube 最小割的更多相关文章

  1. Bzoj 1976: [BeiJing2010组队]能量魔方 Cube 最小割,最大流

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 304[Submi ...

  2. BZOJ1976: [BeiJing2010组队]能量魔方 Cube

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 832  Solved: 281[Submi ...

  3. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  4. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  5. BZOJ 1976 能量魔方 Cube(最小割)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1976 题意:给出一个n*n*n的立方体.每个小单位为字母P或者字母N.相邻两个小单位字母 ...

  6. 【BZOJ1976】能量魔方 [最小割]

    能量魔方 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小C 有一个能量魔方,这个魔方可神奇 ...

  7. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  8. 基于模糊聚类和最小割的层次化网格分割算法(Hierarchical Mesh Decomposition)

    网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免 ...

  9. [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]

    题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...

随机推荐

  1. 【IE兼容性】background:transparent IE中Bug,不能选中input输入框,出现这个问题主要是IE8

    先解释下,background:transparent,默认在IE上会被解析成 background: none transparent scroll repeat 0% 0% transparent ...

  2. lucene 查询

    csdn blog - Lucene 3.0 的Query Parser(查询语法)   ibm developerWorks - 使用 Apache Lucene 2.4.1 搜索文本   osch ...

  3. 用户输入URL后发生了什么,以及优化问题

    用户角度:1.打开浏览器2.输入URL3.按下回车4.浏览器呈现画面 当用户输入页面地址后,浏览器获得用户希望访问的地址,便向该站点服务器发起一系列的请求,这些请求不光包括对页面的请求,还包括对页面中 ...

  4. Java 8 Lambda表达式介绍

    Lambda是什么? Lambda是一个匿名函数,我们可以把Lambda理解为是一段可以传递的代码.可以写出简洁.灵活的代码.作为一种更紧凑的代码风格,使java的语言表达能力得到提升. 可以这么说l ...

  5. nginx的proxy_cache缓存配置

    为什么要做web cache,我想大家最主要的是解决流量的压力.随着网站流量的提升,如果只是单台机器既处理静态文件,又处理动态脚本,显然效率很难上升,不能处理日益上涨的流量压力.与此同时某些网站的页面 ...

  6. Failed to import package with error: Couldn't decompress package

    解压unitypackage的时候出错.原因是路径中包括中文字符,更改成英文路径就可以. 參考 Error while importing package: Couldn't decompress p ...

  7. 一次httpserver优化的经验和教训(silverlight游戏 - 金庸群侠传X0.5上线记)

    金X因为被推荐到ACFUN游戏排行第一名.并同一时候在17YY.7K7K.U77.17173等各大小游戏站点上线.迎来了在线用户数量的爆炸式增长.眼下各大站点使用外链方式.也就是实际链接到金X官网的s ...

  8. Atitit.通过null 参数 反射  动态反推方法调用

    Atitit.通过null 参数 反射  动态反推方法调用 此时,直接使用java  apache的ref工具都失效了.必须要自己实现了. 如果调用接口方法的话,就不能使用apache的ref工具,可 ...

  9. 服务器中很多的CLOSE_WAIT

    服务器中很多的CLOSE_WAIT,请教各位大虾!!!!!!!!!最近遇到一个问题,工程在LINUX服务器上面跑起来了以后,运行一段时间 就有很多的CLOSE_WAIT链接,多了之后,网站就访问不了了 ...

  10. 生产环境中 Ngx_lua 使用技巧和应用的范例

    生产环境中 Ngx_lua 使用技巧和应用的范例 时间 -- :: 51CTO技术博客 原文 http://rfyiamcool.blog.51cto.com/1030776/1252501 主题 L ...