import scipy

from sklearn.datasets import load_digits
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV #模型选择参数优化随机搜索寻优RandomizedSearchCV模型
def test_RandomizedSearchCV():
'''
测试 RandomizedSearchCV 的用法。使用 LogisticRegression 作为分类器,主要优化 C、multi_class 等参数。其中 C 的分布函数为指数分布
'''
### 加载数据
digits = load_digits()
X_train,X_test,y_train,y_test=train_test_split(digits.data, digits.target,test_size=0.25,random_state=0,stratify=digits.target)
#### 参数优化 ######
tuned_parameters ={ 'C': scipy.stats.expon(scale=100), # 指数分布
'multi_class': ['ovr','multinomial']}
clf=RandomizedSearchCV(LogisticRegression(penalty='l2',solver='lbfgs',tol=1e-6),tuned_parameters,cv=10,scoring="accuracy",n_iter=100)
clf.fit(X_train,y_train)
print("Best parameters set found:",clf.best_params_)
print("Randomized Grid scores:")
# for params, mean_score, scores in clf.fit_params,clf.mean_score,clf.score:
# print("\t%0.3f (+/-%0.03f) for %s" % (mean_score, scores() * 2, params))
# print("\t%0.3f (+/-%0.03f) for %s" % (clf.mean_score,clf.score * 2, clf.fit_params))
print(clf) print("Optimized Score:",clf.score(X_test,y_test))
print("Detailed classification report:")
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred)) #调用RandomizedSearchCV()
test_RandomizedSearchCV()

吴裕雄 python 机器学习——模型选择参数优化随机搜索寻优RandomizedSearchCV模型的更多相关文章

  1. 吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

    import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_rep ...

  2. 吴裕雄 python 机器学习——模型选择验证曲线validation_curve模型

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.da ...

  3. 吴裕雄 python 机器学习——模型选择学习曲线learning_curve模型

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.da ...

  4. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

  5. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

  6. 吴裕雄 python 机器学习——模型选择数据集切分

    import numpy as np from sklearn.model_selection import train_test_split,KFold,StratifiedKFold,LeaveO ...

  7. 吴裕雄 python 机器学习——模型选择损失函数模型

    from sklearn.metrics import zero_one_loss,log_loss def test_zero_one_loss(): y_true=[1,1,1,1,1,0,0,0 ...

  8. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  9. 吴裕雄 python 机器学习——K均值聚类KMeans模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

随机推荐

  1. 虫师自动化测试robot Framework 框架的学习

    1.python关键字的定义 #coding=utf-8 def add(a,b): return a+b if __name__ == "__main__": c = add(4 ...

  2. 题解【AcWing275】[NOIP2008]传纸条

    题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...

  3. EF的延迟加载LazyLoad

    延迟加载只对 关联/导航 属性(Navigation Property)有用,普通属性没有这个东西. 延迟加载是一条一条的读取属性,调用一次,读取一次. 条件: context.Configurati ...

  4. HTML列表,表格与媒体元素

    一.无序列表 <ul> <li>无序列表</li> <li>有序列表</li> <li>自定义列表</li> < ...

  5. oracle 锁表处理

    1.查询 select object_name,machine,s.sid,s.serial#from v$locked_object l,dba_objects o ,v$session swher ...

  6. python itertool 浅谈迭代工具

    1.概述 Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数. 首先,我们看看itertools提供的几个“无限”迭代器: import itertools natuals ...

  7. Python_递归函数

    楔子 在讲今天的内容之前,我们先来讲一个故事,讲的什么呢?从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么呢?从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么呢?从前有座山,山里有座庙,庙 ...

  8. Python3爬虫爬取淘宝商品数据

    这次的主要的目的是从淘宝的搜索页面获取商品的信息.其实分析页面找到信息很容易,页面信息的存放都是以静态的方式直接嵌套的页面上的,很容易找到.主要困难是将信息从HTML源码中剥离出来,数据和网页源码结合 ...

  9. IntelliJ IDEA 2017.3尚硅谷-----断点调试

  10. Java-POJ1007-DNA Sorting

    题目大意: 你的任务是分类DNA字符串(只有ACGT四个字符,所有字符串长度相同). 根据逆序数,排序程度从好到差. 第一次用到了“类”,和c++里的结构体有类似之处 一次AC,简单暴力的冒泡排序,要 ...