题解【AcWing275】[NOIP2008]传纸条
首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值。
这个状态设计是可以通过本题的,但其实还有更加简洁的状态设计。
我们设 \(dp_{k,x1,x2}\) 表示第一条路线和第二条路线分别走了 \(k\) 步,其中第一条路线走到了 \((x1,k - x1)\) ,第二条路线走到了 \((x2, k - x2)\) 的路径上的数的和的最大值。
关于 \(x1\) 和 \(x2\) 的取值范围:因为 \(1 \leq x1,x2 \leq n\) ,且 \(1 \leq k-x1, k-x2 \leq m\) ,所以我们可以得出 \(\max(1,k-m) \leq x1,x2 \leq \min(k-1,n)\) 。
由于每一次移动只能向下或向右,因此转移就比较明显了,这里不再赘述。
如果两条路径没有重叠,那么就可以分别加上 \((x1,k-x1)\) 和 \((x2,k-x2)\) 位置上的数。
注意答案要输出 \(dp_{n+m,n,n}\) ,不是 \(dp_{n+m,n,m}\) 。
#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi
using namespace std;
typedef long long LL;
typedef pair <int, int> PII;
typedef pair <int, PII> PIII;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int maxn = 53;
int n, m, a[maxn][maxn], dp[maxn * 2][maxn][maxn], ans = 0;
int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), m = gi();
for (int i = 1; i <= n; i+=1)
{
for (int j = 1; j <= m; j+=1)
{
a[i][j] = gi();
}
}
for (int k = 1; k <= n + m; k+=1)
{
for (int x1 = max(1, k - m); x1 <= min(k - 1, n); x1+=1)
{
for (int x2 = max(1, k - m); x2 <= min(k - 1, n); x2+=1)
{
//计算出新增加的数的和
int t = a[x1][k - x1];
if (x1 != x2) t += a[x2][k - x2];
//转移状态
int &v = dp[k][x1][x2];
v = max(v, dp[k - 1][x1][x2] + t);
v = max(v, dp[k - 1][x1 - 1][x2] + t);
v = max(v, dp[k - 1][x1][x2 - 1] + t);
v = max(v, dp[k - 1][x1 - 1][x2 - 1] + t);
}
}
}
//输出答案
printf("%d\n", dp[n + m][n][n]);
return 0;
}
题解【AcWing275】[NOIP2008]传纸条的更多相关文章
- <转自原博客> NOIP2008 传纸条
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以 ...
- NOIP2008 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- CH5103 [NOIP2008]传纸条[线性DP]
给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...
- NOIP2008 传纸条(DP及滚动数组优化)
传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...
- 洛谷P1006 NOIP提高组2008 传纸条
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无 ...
- Codevs1169:传纸条——题解
题目描述 Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...
- 【NOIP2008】传纸条
[描述] Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就 ...
- NOIP2008 T3 传纸条 解题报告——S.B.S.
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
随机推荐
- Bootstrap 手机屏幕自适应的响应式布局开关
head中添加 <meta name="viewport" content="width=device-width, initial-scale=1, shrink ...
- vue(二)--条件语句
条件语句:v-if v-else v-else-if v-show v-else .v-else-if 必须跟在 v-if 或者 v-else-if之后. 1.v-if <bo ...
- 基于云开发开发 Web 应用(二):界面 UI 开发
工作量分析 在我们进行这部分开发的时候,接下来我们需要进行相应的功能安排和分类. 简单看来,我需要开发 3 个页面: 首页:首页负责用户默认访问. 列表页:列表页面则是在搜索过程中,如果有多个结果,则 ...
- netty 4.x用户使用指南
引言 问题 现在我们使用通用的应用程序或库来相互通信.例如,我们经常使用HTTP客户机从web服务器检索信息,并通过web服务调用远程过程调用.然而,通用协议或其实现有时不能很好地进行扩展.这就像我们 ...
- 剑指offer-拓展训练-字符的所有组合-全组合
/* 题目: 给定不含重复字符字符串的全组合. */ /* 思路: 递归法. 例给定abc,输出的组合长度为1,2,3. 对于长度为2的组合,分选择a(ab,ac)和不选择a的情况(bc). 选择a, ...
- Wannafly Winter Camp 2020 Day 5B Bitset Master - 时间倒流
有 \(n\) 个点的树,给定 \(m\) 次操作,每个点对应一个集合,初态下只有自己. 第 \(i\) 次操作给定参数 \(p_i\),意为把 \(p_i\) 这条边的两个点的集合合并,并分别发配回 ...
- Spring mvc拦截器防御CSRF攻击
CSRF(具体参考百度百科) CSRF(Cross-site request forgery跨站请求伪造,也被称为“One Click Attack”或者Session Riding,通常缩写为CSR ...
- VMware Workstation Pro工具
安装包 链接:https://pan.baidu.com/s/1n-URb83lHtric3Ds8UbF9Q 提取码:c9z5 密钥 FF31K-AHZD1-H8ETZ-8WWEZ-WUUVA CV7 ...
- PHP0010:PHP操作mysql
cmd中清除之前的记录 cmd操作数据库的步骤: php 到 mysql的并发数 15个左右 for循环是要知道起点和终点 foreach是从结果集中取数据 而while可遍历自然结果集
- C# DES加密、解密
/// <summary> /// DES加密字符串 /// </summary> /// <param name="pToEncrypt">待 ...