Heavy-light Decompositions Problem Code: HLDOTSSubmit

All submissions for this problem are available.

Heavy-light decomposition of a tree is a powerful tool that often helps in the most difficult tree data structure problems.

Heavy-light decomposition is to be built on a rooted tree. In this problem, the node with the number 1 should be considered the root of a tree. Heavy light decomposition is a colouring of edges of the tree. Each edge is either heavy or light. For each non leaf node (node having degree greater than 1), from all the edges emanating from it into the subtree rooted at this vertex should have exactly one heavy edge.

The heavy-light decomposition is called correct, if you can reach any node from the root node by using no more that ⌊ log2 N ⌋ light edges, where N is the number of nodes in the tree.

Given a tree, calculate the number of its' correct heavy-light decompositions. As answer could be very large, please print it modulo 19101995.

Input

There is exactly one test case.

The first line of input consists of a single integer N, denoting the number of the nodes in the tree.

Each of the following N - 1 lines contains a pair of integers, denoting the numbers of the nodes that are connected with an edge. The nodes are enumerated by positive integers in the range [1; N].

Output

Output the number of correct heavy-light decompositions of the given tree. Since this number can be huge, please output it modulo 19101995.

Constraints

  • (Subtask 1): 1 ≤ N ≤ 20 - 21 point.
  • (Subtask 2): 1 ≤ N ≤ 1000 - 34 points.
  • (Subtask 3): 1 ≤ N ≤ 100000 - 45 points.

Example

Input:
7
1 2
3 1
3 4
3 5
2 6
2 7 Output:
8

Explanation

Example case 1. Input is a complete binary tree. It consists of 7 nodes, therefore you can't have more than ⌊log2 7⌋ = ⌊(2.80735492206)⌋ = 2 light edges on the path from the root node to any other one. But the tree's height is 2, so you can choose the decomposition in any way you like. All the decompositions will be correct ones. There are three nodes that has outgoing edges from them (in the direction opposite to the root's one), their numbers are 1, 2 and 3. Each of them has 2 outgoing edges from which you can colour exactly one of them heavy, so overall you'll have 2 * 2 * 2 = 8 options of creating the correct heavy-light decompositions.

 
 
题意:求从根到任意节点经过的轻链的个数不超过$log_2n$的轻重链划分的方案数。
一个树dp。
由于模数是一个合数,所以不能直接用快速幂求逆元,可以用改用前缀后缀和做。
f是前缀和,g是后缀和。
注意没有儿子(叶子)和只有一个儿子的特殊情况。
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const long long maxn=1e5+10,mod=19101995;
long long n,f[maxn][20],g[maxn][20],ans[maxn][20],fa[maxn],sz,fr[2*maxn]; long long aa;char cc;
long long read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} long long fir[maxn],nxt[2*maxn],to[2*maxn],e=0;
void add(long long x,long long y) {
to[++e]=y;nxt[e]=fir[x];fir[x]=e;
to[++e]=x;nxt[e]=fir[y];fir[y]=e;
} long long rs;
long long qp(long long x,long long k) {
rs=1;if(x<=1) return x;
while(k) {
if(k&1) (rs*=x)%=mod;
x=x*x%mod;k>>=1;
}
return rs;
} void dfs(long long pos) {
long long z,tt=0,tot;
for(long long y=fir[pos];y;y=nxt[y]) {
if((z=to[y])==fa[pos]) continue;
fa[z]=pos; dfs(z);
}
for(long long i=0;i<=sz;++i) f[0][i]=1ll;
for(long long y=fir[pos];y;fr[nxt[y]]=y,y=nxt[y]) {
if((z=to[y])==fa[pos]) continue; tt++;
for(long long i=0;i<=sz;++i) (f[tt][i]=f[tt-1][i]*ans[z][i])%=mod;
}
tot=tt;
for(long long i=0;i<=sz;++i) g[tt][i]=1ll;
fr[fir[pos]]=0;
for(long long y=fr[0];y;y=fr[y]) {
if((z=to[y])==fa[pos]) continue; tt--;
for(long long i=0;i<=sz;++i) (g[tt][i]=g[tt+1][i]*ans[z][i])%=mod;
}
if(tot>1) for(long long y=fir[pos];y;y=nxt[y]) {
if((z=to[y])==fa[pos]) continue; tt++;
for(long long i=1;i<=sz;++i) (ans[pos][i]+=f[tt-1][i-1]*g[tt][i-1]%mod*ans[z][i])%=mod;
}
else if(!tot)for(long long i=0;i<=sz;++i) ans[pos][i]=1;
else {
if(to[fr[0]]==fa[pos]) fr[0]=fr[fr[0]];
for(long long i=0;i<=sz;++i) ans[pos][i]=ans[to[fr[0]]][i];
}
} int main() {
n=read();long long x,y;
sz=(long long)((double)log(n)/(double)log(2)+1e-8);
for(long long i=1;i<n;++i) {
x=read();y=read();
add(x,y);
}
dfs(1);
printf("%lld",ans[1][sz]);
return 0;
}
/*
7
1 2
3 2
4 3
5 1
6 2
7 3 right answer:
6
*/

  

对拍的rand:

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<ctime>
using namespace std;
const int maxn=15;
int n; int main() {
srand((unsigned)time(NULL));
n=rand()%maxn+2;int x;
printf("%d\n1 2\n",n);
for(int i=3;i<=n;++i) {
x=rand()%(i-1)+1;
printf("%d %d\n",i,x);
}
return 0;
}

  

codechef Heavy-light Decompositions的更多相关文章

  1. Heavy Light Decomposition

    Note 1.DFS1 mark all the depth mark fathers mark the heavy/light children mark the size of each subt ...

  2. 树链剖分I 原理

    树链剖分(Heavy Light Decomposition, HLD)是一种将对[树上两点间的路径]上[边或点]的[修改与查询]转化到[序列]上来处理的方法. 目的:将树的边或点转化到一个线性结构( ...

  3. ACM/ICPC 之 拓扑排序-反向(POJ3687)

    难点依旧是题意....需要反向构图+去重+看题 POJ3687-Labeling Balls 题意:1-N编号的球,输出满足给定约束的按原编号排列的重量序列,如果有多组答案,则输出编号最小的Ball重 ...

  4. poj1013

    题目大意:假造的银币 Sally Jones有一些游客给的银币,但是只有11枚是真正的银币(有一枚是假的),从颜色和大小是无法区分真比还是假币的,但是它的重量和真币是不同的,Sally Jones它是 ...

  5. Java8 in action(1) 通过行为参数化传递代码--lambda代替策略模式

    [TOC] 猪脚:以下内容参考<Java 8 in Action> 需求 果农需要筛选苹果,可能想要绿色的,也可能想要红色的,可能想要大苹果(>150g),也可能需要红的大苹果.基于 ...

  6. TCP与UDP区别小结

    TCP(Transmission Control Protocol):传输控制协议 UDP(User Datagram Protocol):用户数据报协议       主要从连接性(Connectiv ...

  7. POJ1013 称硬币

    题目链接:http://poj.org/problem?id=1013 题目大意 有12枚硬币.其中有11枚真币和1枚假币.假币和真币重量不同,但不知道假币比真币轻还是重.现在,用一架天平称了这些币三 ...

  8. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  9. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

随机推荐

  1. https://github.com/ronggang/transmission-web-control

    首先需要保证你的电脑可以链接国际互联网 如果只能链接大型局域网,那么请您带着电脑出国以便于可以顺利安装https://github.com/ronggang/transmission-web-cont ...

  2. 利用Python覆盖图像的某一部分,即改变图形一块区域(Region)的RGBA值

    原图如下: 改变过后的图如下: 查阅API写法如下: from PIL import Image from PIL import ImageDraw pilim = Image.open('1.jpg ...

  3. 知道了为什么osg::impostor可以这样设置geometry的QUADS了

    之前一直不理解为什么osg::impostor里面的impostorSprite可以直接设置impostorSprite->getCoords()来设置geometry的四个边角,其实是因为这个 ...

  4. python numpy.shape 和 numpy.reshape函数

    导入numpy模块   from numpy import *   import numpy as np ############################################### ...

  5. mac下更改MySQL的默认编码

    mysql默认的编码是latin1,它不支持中文,所以我们一般需要修改他的默认编码格式. 打开终端1. 进入root权限sudo -i 2. cp /usr/local/mysql/support-f ...

  6. .NET CORE中Encoding对GB2312等编码的支持

    最近.NET CORE做网络爬虫的时候,遇到了charset=gbk,转码的时候,发现直接使用Encoding.GetEncoding(“GB2312”)抛异常了.好吧,看到这个的时候,我是一脸懵逼的 ...

  7. Django项目:CRM(客户关系管理系统)--49--40PerfectCRM实现全局账号注册+验证码+页面刷新保留信息

    # gbacc_urls.py # ————————38PerfectCRM实现全局账号登录注销———————— from django.conf.urls import url from gbacc ...

  8. bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 写了个打表程序. #include<iostream> #include& ...

  9. 原生js增加,移除类名

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. vue-cli3.x正确打包项目,解决静态资源与路由加载无效的问题,history模式下配合使用nginx运行打包后的项目

    使用vue-cli3.x正确打包项目,配合nginx运行打包后的内容 vue.config.js module.exports = { publicPath: './',//打包后的位置(如果不设置这 ...