Heavy-light Decompositions Problem Code: HLDOTSSubmit

All submissions for this problem are available.

Heavy-light decomposition of a tree is a powerful tool that often helps in the most difficult tree data structure problems.

Heavy-light decomposition is to be built on a rooted tree. In this problem, the node with the number 1 should be considered the root of a tree. Heavy light decomposition is a colouring of edges of the tree. Each edge is either heavy or light. For each non leaf node (node having degree greater than 1), from all the edges emanating from it into the subtree rooted at this vertex should have exactly one heavy edge.

The heavy-light decomposition is called correct, if you can reach any node from the root node by using no more that ⌊ log2 N ⌋ light edges, where N is the number of nodes in the tree.

Given a tree, calculate the number of its' correct heavy-light decompositions. As answer could be very large, please print it modulo 19101995.

Input

There is exactly one test case.

The first line of input consists of a single integer N, denoting the number of the nodes in the tree.

Each of the following N - 1 lines contains a pair of integers, denoting the numbers of the nodes that are connected with an edge. The nodes are enumerated by positive integers in the range [1; N].

Output

Output the number of correct heavy-light decompositions of the given tree. Since this number can be huge, please output it modulo 19101995.

Constraints

  • (Subtask 1): 1 ≤ N ≤ 20 - 21 point.
  • (Subtask 2): 1 ≤ N ≤ 1000 - 34 points.
  • (Subtask 3): 1 ≤ N ≤ 100000 - 45 points.

Example

Input:
7
1 2
3 1
3 4
3 5
2 6
2 7 Output:
8

Explanation

Example case 1. Input is a complete binary tree. It consists of 7 nodes, therefore you can't have more than ⌊log2 7⌋ = ⌊(2.80735492206)⌋ = 2 light edges on the path from the root node to any other one. But the tree's height is 2, so you can choose the decomposition in any way you like. All the decompositions will be correct ones. There are three nodes that has outgoing edges from them (in the direction opposite to the root's one), their numbers are 1, 2 and 3. Each of them has 2 outgoing edges from which you can colour exactly one of them heavy, so overall you'll have 2 * 2 * 2 = 8 options of creating the correct heavy-light decompositions.

 
 
题意:求从根到任意节点经过的轻链的个数不超过$log_2n$的轻重链划分的方案数。
一个树dp。
由于模数是一个合数,所以不能直接用快速幂求逆元,可以用改用前缀后缀和做。
f是前缀和,g是后缀和。
注意没有儿子(叶子)和只有一个儿子的特殊情况。
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const long long maxn=1e5+10,mod=19101995;
long long n,f[maxn][20],g[maxn][20],ans[maxn][20],fa[maxn],sz,fr[2*maxn]; long long aa;char cc;
long long read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} long long fir[maxn],nxt[2*maxn],to[2*maxn],e=0;
void add(long long x,long long y) {
to[++e]=y;nxt[e]=fir[x];fir[x]=e;
to[++e]=x;nxt[e]=fir[y];fir[y]=e;
} long long rs;
long long qp(long long x,long long k) {
rs=1;if(x<=1) return x;
while(k) {
if(k&1) (rs*=x)%=mod;
x=x*x%mod;k>>=1;
}
return rs;
} void dfs(long long pos) {
long long z,tt=0,tot;
for(long long y=fir[pos];y;y=nxt[y]) {
if((z=to[y])==fa[pos]) continue;
fa[z]=pos; dfs(z);
}
for(long long i=0;i<=sz;++i) f[0][i]=1ll;
for(long long y=fir[pos];y;fr[nxt[y]]=y,y=nxt[y]) {
if((z=to[y])==fa[pos]) continue; tt++;
for(long long i=0;i<=sz;++i) (f[tt][i]=f[tt-1][i]*ans[z][i])%=mod;
}
tot=tt;
for(long long i=0;i<=sz;++i) g[tt][i]=1ll;
fr[fir[pos]]=0;
for(long long y=fr[0];y;y=fr[y]) {
if((z=to[y])==fa[pos]) continue; tt--;
for(long long i=0;i<=sz;++i) (g[tt][i]=g[tt+1][i]*ans[z][i])%=mod;
}
if(tot>1) for(long long y=fir[pos];y;y=nxt[y]) {
if((z=to[y])==fa[pos]) continue; tt++;
for(long long i=1;i<=sz;++i) (ans[pos][i]+=f[tt-1][i-1]*g[tt][i-1]%mod*ans[z][i])%=mod;
}
else if(!tot)for(long long i=0;i<=sz;++i) ans[pos][i]=1;
else {
if(to[fr[0]]==fa[pos]) fr[0]=fr[fr[0]];
for(long long i=0;i<=sz;++i) ans[pos][i]=ans[to[fr[0]]][i];
}
} int main() {
n=read();long long x,y;
sz=(long long)((double)log(n)/(double)log(2)+1e-8);
for(long long i=1;i<n;++i) {
x=read();y=read();
add(x,y);
}
dfs(1);
printf("%lld",ans[1][sz]);
return 0;
}
/*
7
1 2
3 2
4 3
5 1
6 2
7 3 right answer:
6
*/

  

对拍的rand:

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<ctime>
using namespace std;
const int maxn=15;
int n; int main() {
srand((unsigned)time(NULL));
n=rand()%maxn+2;int x;
printf("%d\n1 2\n",n);
for(int i=3;i<=n;++i) {
x=rand()%(i-1)+1;
printf("%d %d\n",i,x);
}
return 0;
}

  

codechef Heavy-light Decompositions的更多相关文章

  1. Heavy Light Decomposition

    Note 1.DFS1 mark all the depth mark fathers mark the heavy/light children mark the size of each subt ...

  2. 树链剖分I 原理

    树链剖分(Heavy Light Decomposition, HLD)是一种将对[树上两点间的路径]上[边或点]的[修改与查询]转化到[序列]上来处理的方法. 目的:将树的边或点转化到一个线性结构( ...

  3. ACM/ICPC 之 拓扑排序-反向(POJ3687)

    难点依旧是题意....需要反向构图+去重+看题 POJ3687-Labeling Balls 题意:1-N编号的球,输出满足给定约束的按原编号排列的重量序列,如果有多组答案,则输出编号最小的Ball重 ...

  4. poj1013

    题目大意:假造的银币 Sally Jones有一些游客给的银币,但是只有11枚是真正的银币(有一枚是假的),从颜色和大小是无法区分真比还是假币的,但是它的重量和真币是不同的,Sally Jones它是 ...

  5. Java8 in action(1) 通过行为参数化传递代码--lambda代替策略模式

    [TOC] 猪脚:以下内容参考<Java 8 in Action> 需求 果农需要筛选苹果,可能想要绿色的,也可能想要红色的,可能想要大苹果(>150g),也可能需要红的大苹果.基于 ...

  6. TCP与UDP区别小结

    TCP(Transmission Control Protocol):传输控制协议 UDP(User Datagram Protocol):用户数据报协议       主要从连接性(Connectiv ...

  7. POJ1013 称硬币

    题目链接:http://poj.org/problem?id=1013 题目大意 有12枚硬币.其中有11枚真币和1枚假币.假币和真币重量不同,但不知道假币比真币轻还是重.现在,用一架天平称了这些币三 ...

  8. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  9. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

随机推荐

  1. Ceisum官方教程1 -- 开始

    原文地址:https://cesium.com/docs/tutorials/getting-started/ 学会使用全球地形.影像.3d tile(模型切片).地理编码创建一个Cesium程序. ...

  2. if _name_ == " _main_"

    1.作用 py文件有2种使用方法,第1是自己本脚本自己独立执行:第2是被import到其他文件脚本中执行. if  _name_ == " _main_" 该语句控制其他下一步的脚 ...

  3. pycharm新手入门

    1.新建项目 2.配置 3.create 4.新建.py文件 5.可以愉快的敲代码啦

  4. js 打开app应用,如果没有安装就去下载

    废话不多说,直接上代码 var APPCommon = { iphoneSchema: 'XingboTV://', iphoneDownUrl: 'https://itunes.apple.com/ ...

  5. Java 23 种设计模式的分类和功能

    设计模式(Design Pattern)是前辈们对代码开发经验的总结,是解决特定问题的一系列套路.它不是语法规定,而是一套用来提高代码可复用性.可维护性.可读性.稳健性以及安全性的解决方案. 设计模式 ...

  6. Javascript-循环输出菱形,并可菱形自定义大小

    var Cen = 6;//定义菱形中部为第几行(起始值为0) //for循环输出菱形 document.write("<button onclick='xh()'>点我for循 ...

  7. ES6--反引号的使用

    /*动态初始退出登出框话模态框*/ /*动态的初始化退出登陆模态框 反引号ES6语法 * 为什么在使用字符串格式直接创建模态框 * 1.不能在html页面中创建模板,因为如果换一个页面就没有对应的模板 ...

  8. $\mathcal{Miemeng}$的病态码风计划

    晚上困的要命,先写个码风计划提提神. 计划目标 抵制无理压行. 抵制不可读代码. 倡导代码艺术化,分层化 具体的一些细节和展示 1>整体 首先要把预读部分(我这么叫的),命名域使用,全局变量定义 ...

  9. Clash Credenz 2014 Wild Card Round题解

    A题 简单模拟. /************************************************************************* > File Name: ...

  10. NYoj536 矩阵链乘

    经典问题没啥说的 #include<stdio.h> #include<string.h> #define max 100+1 #define min(a,b) (a<b ...