POJ 3280 Cheapest Palindrome DP题解
看到Palindrome的题目。首先想到的应该是中心问题,然后从中心出发,思考怎样解决。
DP问题通常是从更加小的问题转化到更加大的问题。然后是从地往上 bottom up地计算答案的。
能得出状态转移方程就好办了,本题的状态转移方程是:
if (cowID[i] == cow{j]) tbl[id][i] = tbl[id][i+1];//相等的时候无需修改
else tbl[id][i] = min(tbl[!id][i+1] + cost[cowID[i]-'a'], tbl[!id][i] + cost[cowID[j]-'a']);//不相等的时候须要看修改那一边的字符比較划算
注意:
1 cost的删除和插入对于DP来说实际是一样的操作,所以仅仅须要报出一个最小的cost就能够了
2 cost的值是以字母为下标保存值的。不是按顺序给出的,也可能某些字母的值没有给出,这个时候默认应该为零
最后是须要节省内存,这些题目一般能够仅仅看一维dp table数组就能够了,这个时候要二维转化为一维保存结果,实际測试内存节省许多。
这里使用所谓的滚动数组,轮流使用两个数组记录数据。
主要把二维表的斜对角格转为一个数组保存,相应好下标就能够了。
#include <stdio.h>
#include <string.h> const int MAX_M = 2001;
const int MAX_N = 26;
char cowID[MAX_M];
int cost[MAX_N];//minimum of the cost of adding and deleting that character.
int tbl[2][MAX_M];
int N, M; inline int min(int a, int b) { return a < b ? a : b; } int getMinCost()
{
memset(tbl[0], 0, sizeof(int)*M);
memset(tbl[1], 0, sizeof(int)*M);
bool id = false;
for (int d = 2; d <= M; d++)
{
id = !id;
for (int i = 0, j = d-1; j < M; i++, j++)
{
if (cowID[i] == cowID[j]) tbl[id][i] = tbl[id][i+1];
else
{
int c1 = tbl[!id][i+1] + cost[cowID[i]-'a'];
int c2 = tbl[!id][i] + cost[cowID[j]-'a'];
tbl[id][i] = min(c1, c2);
}
}
}
return tbl[id][0];
} int main()
{
char a;
int c1, c2;
while (scanf("%d %d", &N, &M) != EOF)
{
memset(cost, 0, sizeof(int)*N);
getchar(); gets(cowID);
for (int i = 0; i < N; i++)
{
a = getchar();
scanf("%d %d", &c1, &c2);
cost[a-'a'] = min(c1, c2);//only need to save the minimum
getchar();
}
printf("%d\n", getMinCost());
}
return 0;
}
POJ 3280 Cheapest Palindrome DP题解的更多相关文章
- poj 3280 Cheapest Palindrome ---(DP 回文串)
题目链接:http://poj.org/problem?id=3280 思路: dp[i][j] :=第i个字符到第j个字符之间形成回文串的最小费用. dp[i][j]=min(dp[i+1][j]+ ...
- POJ 3280 Cheapest Palindrome(DP)
题目链接 被以前的题目惯性思维了,此题dp[i][j],代表i到j这一段变成回文的最小花费.我觉得挺难的理解的. #include <cstdio> #include <cstrin ...
- POJ 3280 - Cheapest Palindrome - [区间DP]
题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping trac ...
- POJ 3280 Cheapest Palindrome(DP 回文变形)
题目链接:http://poj.org/problem?id=3280 题目大意:给定一个字符串,可以删除增加,每个操作都有代价,求出将字符串转换成回文串的最小代价 Sample Input 3 4 ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- (中等) POJ 3280 Cheapest Palindrome,DP。
Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system ...
- POJ 3280 Cheapest Palindrome(DP)
题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j ...
- POJ 3280 Cheapest Palindrome 简单DP
观察题目我们可以知道,实际上对于一个字母,你在串中删除或者添加本质上一样的,因为既然你添加是为了让其对称,说明有一个孤立的字母没有配对的,也就可以删掉,也能满足对称. 故两种操作看成一种,只需要保留花 ...
- POJ 3280 Cheapest Palindrome (DP)
Description Keeping track of all the cows can be a tricky task so Farmer John has installed a sys ...
随机推荐
- 洛谷P2756 飞行员配对方案问题(二分图匹配)
P2756 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其 ...
- Python 45 css三种引入方式以及优先级
一:css三种引入方式 三种方式为:行间式 | 内联式 | 外联式 行间式 1.在标签头部的style属性内 2.属性值满足的是css语法 3.属性值用key:value形式赋值,value具 ...
- JAVA 中进行网络通信时,通信的程序两端要传输的对象,不仅要序列化,而且这个对象所属的类的名字要完全一样,连包的名字都得一样
如上图项目目录,这是一个简易的QQ,客户端登录的时候要传输用户信息到服务器验证,所以两端都会用到User类的对象,但一开始我在Server端的包名是com.qq.server.common,两端的报名 ...
- Mybatis与Hibernate的对比
Mybatis与Hibernate的对比 工作中,用了一段Hibernate与Mybatis,也在此简单的聊上几句,希望对大家有帮助. Mybatis与Hibernate不同,它不完全是一个ORM框架 ...
- dubbo之多注册中心
Dubbo 支持同一服务向多注册中心同时注册,或者不同服务分别注册到不同的注册中心上去,甚至可以同时引用注册在不同注册中心上的同名服务.另外,注册中心是支持自定义扩展的. 多注册中心注册 比如:中文站 ...
- HDU_1517_博弈(巧妙规律)
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- C# 遍历文本框
#region 文本框指定位置加入回车符 private void button1_Click(object sender, EventArgs e) { #region // 查询首字母位置 //s ...
- jq遍历table 下的 td 添加类
<script> $('#btntb').click(function () { $('#tab tr').each(function (i) { // 遍历 tr $(this).chi ...
- vue中引入json数据,不用本地请求
1.我的项目结构,需要在Daily.vue中引入daily.js中的json数据 2.把json数据放入一个js文件中,用exports导出,vscode的json格式太严格了,很多数据,调了一个多小 ...
- eoLinker上线两周年+ AMS V4.0 发布:全新UI界面,带来领先的API开发管理解决方案!
2018年7月,eoLinker 发布了<eoLinker AMS 2018年年中用户调研问卷>,前后经历一周的时间,共收集到超过1000份有效调查问卷.超过300个有效改进意见. eoL ...