LCA 离线的Tarjan算法 poj1330 hdu2586
LCA问题有好几种做法,用到(tarjan)图拉算法的就有3种。具体可以看邝斌的博客。http://www.cnblogs.com/kuangbin/category/415390.html
几天的学习,我就弄懂了离线的Tarjan算法。在此,先鄙视一下哈工大出版的《图论及应用》,离线的Tarjan算法的模版用不了。害我白忙活。
poj1330的代码可以直接用来当模版。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int f[N], r[N], anc[N];
bool vis[N];
struct node
{
int to,next;
}edge[N*];
int head[N],tot;
void addedge(int i, int j)
{
edge[tot].to=j;edge[tot].next=head[i];head[i]=tot++;
edge[tot].to=i;edge[tot].next=head[j];head[j]=tot++;
}
struct NODE
{
int to,next,index;//index(查询编号)
}query[N*];
int h[N], res[N*], tt, q;
bool flag[N];
void add_q(int i, int j, int k)
{
query[tt].to=j;query[tt].next=h[i];query[tt].index=k;h[i]=tt++;
query[tt].to=i;query[tt].next=h[j];query[tt].index=k;h[j]=tt++;
}
void init(int n)
{
for(int i=;i<=n;i++)
{
f[i]=-;
r[i]=;
vis[i]=;
anc[i]=;
flag[i]=;
tot=tt=;
}
memset(head,-,sizeof(head));
memset(h,-,sizeof(h));
}
int Find(int x)
{
if(-==f[x]) return x;
return f[x]=Find(f[x]);
}
void Link(int x,int y)
{
int a=Find(x),b=Find(y);
if(a!=b)
{
if(r[a]<=r[b]) {f[a]=b; r[b]+=r[a];}
else {f[b]=a; r[a]+=r[b];}
}
}
void LCA(int u)
{
anc[u]=u;
vis[u]=;
for(int k=head[u];k!=-;k=edge[k].next)
{
int v=edge[k].to;
if(vis[v]) continue;
LCA(v);
Link(u,v);
anc[Find(u)]=u;
}
for(int k=h[u];k!=-;k=query[k].next)
{
int v=query[k].to;
if(vis[v])
{
res[query[k].index]=anc[Find(v)];
}
}
}
int main()
{
//freopen("test.txt","r",stdin);
int T,n,u,v,i;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init(n);
for(i=;i<n;i++)
{
scanf("%d%d",&u,&v);
flag[v]=;
addedge(u,v);
}
q=;
for(i=;i<q;i++)
{
scanf("%d%d",&u,&v);
add_q(u,v,i);
}
int root;
for(i=;i<=n;i++)
if(!flag[i]) {root=i; break;}
LCA(root);
for(i=;i<q;i++)
printf("%d\n",res[i]);
}
return ;
}
hdu2586的要求有些提高,还要求距离。假如要求u和v两点的距离,可以通过求u和v到根结点的距离,还有他们的LCA到根节点的距离。公式是dis[u] + dis[v] -2*dis[LCA[u,v]]。
//hdu2586 O(n+q) #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int f[N], r[N], anc[N];
bool vis[N];
struct node
{
int to,next,w;
}edge[N*];
int head[N],tot;
void addedge(int i, int j,int w)
{
edge[tot].to=j;edge[tot].w=w;edge[tot].next=head[i];head[i]=tot++;
edge[tot].to=i;edge[tot].w=w;edge[tot].next=head[j];head[j]=tot++;
}
struct NODE
{
int to,next,index;//index(查询编号)
}query[N*];
int h[N], res[N*], tt, q, dist[N];
bool flag[N];
void add_q(int i, int j, int k)
{
query[tt].to=j;query[tt].next=h[i];query[tt].index=k;h[i]=tt++;
query[tt].to=i;query[tt].next=h[j];query[tt].index=k;h[j]=tt++;
}
void init(int n)
{
for(int i=;i<=n;i++)
{
f[i]=-;
r[i]=;
vis[i]=;
anc[i]=;
flag[i]=;
tot=tt=;
}
memset(head,-,sizeof(head));
memset(h,-,sizeof(h));
}
int Find(int x)
{
if(-==f[x]) return x;
return f[x]=Find(f[x]);
}
void Link(int x,int y)
{
int a=Find(x),b=Find(y);
if(a!=b)
{
if(r[a]<=r[b]) {f[a]=b; r[b]+=r[a];}
else {f[b]=a; r[a]+=r[b];}
}
}
void LCA(int u)
{
anc[u]=u;
vis[u]=;
for(int k=head[u];k!=-;k=edge[k].next)
{
int v=edge[k].to;
if(vis[v]) continue;
dist[v]=dist[u]+edge[k].w;
LCA(v);
Link(u,v);
anc[Find(u)]=u; }
for(int k=h[u];k!=-;k=query[k].next)
{
int v=query[k].to;
if(vis[v])
res[query[k].index]=anc[Find(v)];
}
}
int a[N],b[N];
int main()
{
//freopen("test.txt","r",stdin);
int T,n,u,v,i,m,w;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&q);
init(n);
for(i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
flag[v]=;
addedge(u,v,w);
}
for(i=;i<q;i++)
{
scanf("%d%d",&u,&v);
a[i]=u;b[i]=v;
add_q(u,v,i);
}
int root;
for(i=;i<=n;i++)
if(!flag[i]) {root=i; break;}
dist[root]=;
LCA(root);
for(i=;i<q;i++)
printf("%d\n",dist[a[i]]+dist[b[i]]-*dist[res[i]]);
}
return ;
}
LCA 离线的Tarjan算法 poj1330 hdu2586的更多相关文章
- (转载)LCA问题的Tarjan算法
转载自:Click Here LCA问题(Lowest Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两 ...
- LCA 离线做法tarjan
tarjan(int u) { int v; for(int i=h[u];i;i=nex[i])//搜索边的 { v=to[i]; tarjan(v); marge(u,v); vis[v]=; } ...
- Tarjan算法离线 求 LCA(最近公共祖先)
本文是网络资料整理或部分转载或部分原创,参考文章如下: https://www.cnblogs.com/JVxie/p/4854719.html http://blog.csdn.net/ywcpig ...
- LCA离线算法Tarjan的模板
hdu 2586:题意:输入n个点的n-1条边的树,m组询问任意点 a b之间的最短距离 思路:LCA中的Tarjan算法,RMQ还不会.. #include <stdio.h> #inc ...
- 【POJ 1330 Nearest Common Ancestors】LCA问题 Tarjan算法
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- 『追捕盗贼 Tarjan算法』
追捕盗贼(COCI2007) Description 为了帮助警察抓住在逃的罪犯,你发明了一个新的计算机系统.警察控制的区域有N个城市,城市之间有E条双向边连接,城市编号为1到N. 警察经常想在罪犯从 ...
- [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)
题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
随机推荐
- solr的学习
1): http://archive.apache.org/dist/lucene/solr/ref-guide/ pdf下载地址 solr历史版本的下载:http://archive.apach ...
- 【剑指Offer】18、二叉树的镜像
题目描述: 操作给定的二叉树,将其变换为原二叉树的镜像. 解题思路: 求一棵树的镜像的过程:先前序遍历这棵树的每个结点,如果遍历到的结点有子结点,就交换它的两个子结点.当交换完所有的非 ...
- swift-UITableView的基本使用
废话不多说了,直接贴我今天写的代码吧:如果新手有什么不懂的,可以发我邮箱. // // singleInfo.swift 个人信息 // Housekeeper // // ...
- js 中this到底指向哪里?
其实js的this指向很简单.我们记住下面3种情况. this 指向的是浏览器中的window.代码如下: function fn(){ this.name='yangkun'; this.age=2 ...
- java8方式日期比较
static ZoneId ZONEID_BJ = ZoneId.of("GMT+08:00"); private boolean sameDate(Date d1, Date d ...
- 关于使用element中的popup问题
高产似母猪..写完上篇看了几集新番就空虚了..零点时分决定爬起来,趁着清明假期能写多写点. 1.前言 我们知道弹出框都是在触发了某种条件后展示,而一个个的新的弹出框的展示,总是覆盖着上一个弹出框.实现 ...
- jquery 绑定回车(Enter )事件
全局: $(function(){ document.onkeydown = function(e){ var ev = document.all ? window.event : e; if(ev. ...
- tp5 封装百度地图api接口
//服务器端api extend\Map <?php /** * 百度地图业务封装 */ class Map{ /** * 根据地址来获取经纬度 * @param $address */ pub ...
- firebird数据库建模
用ERS数据库建模,真的很方便.可是8.0版本只支持interbase和ib2007.没有建模工具,查找修改数据库等确实是裹足难走.新的建模工具不适应.找来找去,新版10.0出来了.雷锋帮助把使用权也 ...
- JVM常用参数(内存分配 内存回收日志)
内存监控 -verbose:gc 测试代码 public static void main(String[] args){ List<Classes> classes=new Array ...