uva10766生成树计数(矩阵树定理)



更正了我之前打错的地方,有边的话G[i][j]=-1;
WA了好多次,中间要转成long double才行。。这个晚点更新。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; typedef long double ld; const int N=;
const ld eps=1e-;
int map[N][N];
ld G[N][N]; ld myabs(ld x){return x> ? x:-x;} ld guass(int n)
{
ld ans=;
for(int i=;i<=n;i++)
{
int r=i;
for(int j=i+;j<=n;j++)
if(myabs(G[j][i]) > myabs(G[r][i])) r=j;
if(r!=i)
{
for(int j=;j<=n;j++) swap(G[i][j],G[r][j]);
ans*=-;
}
if(myabs(G[i][i])<eps) return ;
for(int j=i+;j<=n;j++)
for(int k=n;k>=i;k--)
G[j][k]-=G[j][i]/G[i][i]*G[i][k];
}
for(int i=;i<=n;i++) ans*=G[i][i];
return myabs(ans);
} int main()
{
//freopen("a.in","r",stdin);
int n,m,k;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
int x,y;
memset(map,,sizeof(map));
memset(G,,sizeof(G));
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
map[x][y]=map[y][x]=;
}
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
if(!map[i][j])
{
G[i][j]=-;G[j][i]=-;
G[i][i]++;G[j][j]++;
}
printf("%.0lf\n",(double)guass(n-));
}
return ;
}
uva10766生成树计数(矩阵树定理)的更多相关文章
- spoj104 highways 生成树计数(矩阵树定理)
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)
传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...
- BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...
- luoguP4208 [JSOI2008]最小生成树计数 矩阵树定理
题目大意: 求最小生成树的数量 曾今的我感觉这题十分的不可做 然而今天看了看,好像是个类模板的题.... 我们十分容易知道,记能出现在最小生成树中的边的集合为\(S\) 那么,只要是\(S\)中的边构 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 【bzoj2467】[中山市选2010]生成树 矩阵树定理
题目描述 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈 ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
随机推荐
- 11.22Daily Scrum(2)
人员 任务分配完成情况 明天任务分配 王皓南 实现网页上视频浏览的功能.研究相关的代码和功能.984 数据库测试 申开亮 实现网页上视频浏览的功能.研究相关的代码和功能.985 实现视频浏览的功能 王 ...
- A4
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 很胖,刚学,照猫画虎做了登录与注册界面. 展示GitHub ...
- 安全的API接口解决方案
在各种手机APP泛滥的现在,背后都有同样泛滥的API接口在支撑,其中鱼龙混杂,直接裸奔的WEB API大量存在,安全性令人堪优 在以前WEB API概念没有很普及的时候,都采用自已定义的接口和结构,对 ...
- C# 4 中使用迭代器的等待任务
介绍 可能你已经阅读 C#5 关于 async 和 await 关键字以及它们如何帮助简化异步编程的,可惜的是在升级VS2010后短短两年时间,任然没有准备好升级到VS2012,在VS2010和C#4 ...
- Delphi Dataset CurValue
TField.CurValue Property Represents the current value of the field component including changes made ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- html的body内标签之多行文本及下拉框
一,<textarea>默认值<textarea> -name属性,textarea的默认值放到中间 <select> name,内部option value,提 ...
- cf 443 D. Teams Formation](细节模拟题)
cf 443 D. Teams Formation(细节模拟题) 题意: 给出一个长为\(n\)的序列,重复\(m\)次形成一个新的序列,动态消除所有k个连续相同的数字,问最后会剩下多少个数(题目保证 ...
- POJ.2142 The Balance (拓展欧几里得)
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...
- 算法学习 拓扑排序(TopSort)
拓扑排序 一.基本概念 在一个有向无环图(Directed Acyclic Graph, DAG)中,规定< u,v > 表示一条由u指向v的的有向边.要求对所有的节点排序,使得每一条有向 ...