题目链接

题目

题目描述

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。

windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。

如果windy只能粉刷 T 次,他最多能正确粉刷多少格子?

一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

输入描述

输入文件paint.in第一行包含三个整数,N M T。

接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

输出描述

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

示例1

输入

3 6 3
111111
000000
001100

输出

16

备注

30%的数据,满足 \(1 \le N,M \le 10 ;0 \le T \le 100\) 。

100%的数据,满足 \(1 \le N,M \le 50 ; 0 \le T \le 2500\) 。

题解

方法一

知识点:线性dp。

这道题相当于 \(k\) 串最大和套 \(k\) 串最大和,十分巧妙。

首先考虑设 \(f[i][j]\) 为考虑到第 \(i\) 行,共连续刷了 \(j\) 次的最多刷对格数。发现转移时的累加和变为第 \(i\) 行,考虑到第 \(m\) 格,共刷了 \(k\) 次的最多刷对格数,用 \(g[i][m][k]\) 表示。有转移方程为:

\[f[i][j] = \max (f[i-1][j],f[i-1][j-k] + g[i][m][k]),1 \leq k \leq j
\]

接下来考虑求 \(g[i][j][k]\) ,每行是独立的,第一维可以不考虑。接下来就和 \(k\) 串最大和一致,有转移方程:

\[g[i][j][k] = \max (g[i][j-1][k],g[i][j-l][k-1] + \max(s,l - s)),s = sum[i][j] - sum[i][j-l] ,1 \leq l \leq j
\]

其中 \(sum[i][j]\) 代表第 \(i\) 行前 \(j\) 个数里 \(1\) 的数量,\(\max (s,l-s)\) 表示新刷的 \([j-l+1,j]\) 里刷数量最多的种类。

时间复杂度 \(O(nm^2t +nt^2)\)

空间复杂度 \(O(nmt)\)

方法二

知识点:线性dp。

思路差不多,就是状态设置不一样,设 \(f[i][j][k][l]\) 表示为在 \((i,j)\) 处的格子,已经刷了 \(k\) 次,这个格子状态为 \(l\) (0/1,涂0/涂1)。显然有转移方程:

\[\left \{
\begin{array}{l}
f[i][j][k][0] = \max(f[i][j-1][k-1][0],f[i][j-1][k-1][1]) + [a[i][j] = 0] &,j = 1\\
f[i][j][k][1] = \max(f[i][j-1][k-1][0],f[i][j-1][k-1][0]) + [a[i][j] = 1] &,j = 1\\
f[i][j][k][0] = \max(f[i][j-1][k][0],f[i][j-1][k-1][1]) + [a[i][j] = 0] &,j \neq 1\\
f[i][j][k][1] = \max(f[i][j-1][k-1][0],f[i][j-1][k][0]) + [a[i][j] = 1] &,j \neq 1
\end{array}
\right.
\]

\(j = 1\) ,必须换行,即必须分段。

时间复杂度 \(O(nmt)\)

空间复杂度 \(O(nmt)\)

代码

方法一

#include <bits/stdc++.h>

using namespace std;

int sum[57][57], f[57][2507], g[57][57][2507];

int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m, t;
cin >> n >> m >> t;
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= m;j++) {
char x;
cin >> x;
sum[i][j] = sum[i][j - 1];
if (x == '1') sum[i][j]++;
}
}
for (int i = 1;i <= n;i++)
for (int j = 1;j <= m;j++)
for (int k = 1;k <= t;k++)
for (int l = 1;l <= j;l++)
g[i][j][k] = max(g[i][j][k], g[i][j - l][k - 1] + max(sum[i][j] - sum[i][j - l], l - (sum[i][j] - sum[i][j - l]))); for (int i = 1;i <= n;i++)
for (int j = 1;j <= t;j++)
for (int k = 1;k <= j;k++)
f[i][j] = max(f[i][j], f[i - 1][j - k] + g[i][m][k]); cout << f[n][t] << '\n';
return 0;
}

方法二

#include <bits/stdc++.h>

using namespace std;

int a[57][57], f[57][57][2507][2];

int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m, t;
cin >> n >> m >> t;
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= m;j++) {
char x;
cin >> x;
a[i][j] = x - '0';
}
}
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= m;j++) {
for (int k = 1;k <= t;k++) {
if (j == 1) {
f[i][j][k][0] = max(f[i - 1][m][k - 1][1], f[i - 1][m][k - 1][0]) + (a[i][j] == 0);
f[i][j][k][1] = max(f[i - 1][m][k - 1][1], f[i - 1][m][k - 1][0]) + (a[i][j] == 1);
}
else {
f[i][j][k][0] = max(f[i][j - 1][k][0], f[i][j - 1][k - 1][1]) + (a[i][j] == 0);
f[i][j][k][1] = max(f[i][j - 1][k - 1][0], f[i][j - 1][k][1]) + (a[i][j] == 1);
}
}
}
}
cout << max(f[n][m][t][0], f[n][m][t][1]) << '\n';
return 0;
}

NC20273 [SCOI2009]粉刷匠的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  3. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  4. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  5. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  6. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  7. BZOJ_1296_[SCOI2009]粉刷匠_DP

    BZOJ_1296_[SCOI2009]粉刷匠_DP Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能 ...

  8. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  9. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

随机推荐

  1. SeataAT模式原理

    Seata架构 Seata将分布式事务理解为一个全局事务,它由若干个分支事务组成,一个分支事务就是一个满足ACID的本地事务. Seata架构中有三个角色: TC (Transaction Coord ...

  2. HYPERMESH-NASTRAN梁的方向与偏置

    Nastran关于梁的定义 我们知道,在定义梁单元时,一般需要定义单元的方向,或者说是单元的局部坐标系.对于Nastran内CBAR单元来说,梁轴向为X方向,我们需要给出向量\(\overrighta ...

  3. 渗透测试之常用的sql语句

    学习路漫漫,常用的sql语句给我们平常所运用的sql语句相差不多,用句土话讲:百变不离其中 注:网络安全时刻警醒,需要打靶的还需要建立自己的靶场,关注博主在以往博客中分享有多种创建靶场可参考 1.判断 ...

  4. 商户编号[Merchant Id]是什么

    1. Merchant Id是什么 2. Merchant Id 是有哪几个部分构成的 2.1 收单机构代码 2.2 商户地区代码 2.3 Merchant Category Code(MCC) 本文 ...

  5. C语言学习之我见-strcat()字符拼接函数(有缺陷)

    strcat()函数,用于两个字符串的拼接. (1)函数原型: char * strcat(char *Dest,const char * Source); (2)头文件: #include < ...

  6. JavaScript写放大镜效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 分享一款IDEA主题,很奈斯

    主题名称:Dark Purple Theme: 更换主题:在Setting中设置更换

  8. Google Colab初次使用

    网页无法加载,出现HTTP ERROR 407 开启chrome时不要在最下面的固定栏打开,否则会出错.

  9. RASP | 远程Java应用的RASP调试教程

    远程Java应用的RASP调试教程 介绍 Java RASP是基于Java Agent技术实现的,而Java Agent代码无法独立启动,必须依赖于一个Java运行时程序才能运行. 如何调试一个Jav ...

  10. springboot配置logback.xml

    由于springboot框架自带log4j,因此我们只需配置下logback文件,即可, 在main/resources根目录下,新建logback-spring.xml文件,copy下述代码: &l ...