[Noi2010]能量采集

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,

栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列

有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,

表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了

一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器

连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于

连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植

物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20

棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能

量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

5 4

【样例输入2】

3 4

Sample Output

【样例输出1】

36

【样例输出2】

20

对于100%的数据:1 ≤ n, m ≤ 100,000。

题解

莫比乌斯反演

老套路,先设n<m

我们注意到每个格子的贡献其实就是2 * gcd(x,y) - 1,所以我们要求的是

其中最难蒜的就是中间那一坨

我们设

我们先求一个更简单的,

那么根据莫比乌斯反演公式,

然后把f(k)代入前面的那一坨式子里

因为dk <= n,所以我们不妨就设T=dk ,枚举 T,然后枚举 T 的因数 k

仔细一看,后面的

大有文章。

这不就是莫比乌斯反演的后半段吗?我们解一解,设

,那么不就有这个关系

反演过来,刚好是

所以最终的答案就是

用欧拉筛做一遍,然后枚举van事。

CODE

之前欧拉筛里写了μ,懒得删了

#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 100005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
LL zxy;
LL n,m,i,j,k,s,o;
int p[MAXN],cnt;
int mu[MAXN];
LL phi[MAXN];
bool f[MAXN];
inline void sieve(int n) {
mu[1] = 1;
phi[1] = 1;
for(rg int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
phi[i] = i-1;
}
for(rg int j = 1;j <= cnt && i * p[j] <= n;j ++) {
f[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0;
phi[i * p[j]] = p[j] * phi[i];
break;
}
else mu[i * p[j]] = -mu[i],phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
return ;
}
signed main() {
sieve(100000);
n = read();m = read();
if(n > m) swap(n,m);
LL ans = 0;
for(int i = 1;i <= n;i ++) {
ans += (n/i) *1ll* (m/i) * phi[i];
}
printf("%lld\n",2ll * ans - n * 1ll * m);
return 0;
}

[Noi2010]能量采集 (莫比乌斯反演)的更多相关文章

  1. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  2. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  3. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  4. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  5. bzoj 2005 能量采集 莫比乌斯反演

    我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1) 化简得2×∑ni=1∑mj=1gcd(i,j)−n×m 所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可 ∑ni=1∑mj= ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. [NOI2010]能量采集(莫比乌斯反演)

    题面: bzoj luogu NOI2010能量采集 题解 读完题之后我们发现在每个产生贡献的点\((x1,y1)\)中,它与原点之间的点\((x2,y2)\)都满足\(x2|x1\),\(y2|y1 ...

  8. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  9. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

随机推荐

  1. 【C++函数题目】重载完成Compare函数

    题目来源链接:https://www.dotcpp.com/oj/problem2008.html 题目讲解链接:http://6o2.cn/1yjJB2  题目描述 利用函数重载完成三个比较大小的C ...

  2. 全新升级的AOP框架Dora.Interception[4]: 基于Lambda表达式的拦截器注册方式

    如果拦截器应用的目标类型是由自己定义的,Dora.Interception(github地址,觉得不错不妨给一颗星)可以在其类型或成员上标注InterceptorAttribute特性来应用对应的拦截 ...

  3. SAP BPC 开发日记

    1.获取维度模型的方法1 DATA:i_appset_id TYPE uj_appset_id,     i_appl_id   TYPE uj_appl_id.i_appset_id = 'SINO ...

  4. 基于JavaFX图形界面演示的迷宫创建与路径寻找

    事情的起因是收到了一位网友的请求,他的java课设需要设计实现迷宫相关的程序--如标题概括. 我这边不方便透露相关信息,就只把任务要求写出来. 演示视频指路: 视频过审后就更新链接 完整代码链接: 网 ...

  5. 关于使用netstat -lantup查看的SSHD 6010端口解释

    关于使用netstat -lantup查看的SSHD 6010端口解释: 1.使用netstat -lantup查看当前系统开启的服务端口 tcp6       0      0 ::1:6010   ...

  6. 微信开发在Pc端调用公众号粉丝发送过来的图片素材

    因为项目要在PC端搞一个微信墙功能,就是把粉丝发送过来的上墙内容给展示出来,但因为微信对微信素材进行了防盗链加密处理,所以在非微信页面上直接引用在微信服务器上的图片的链接是无法显示的,只会显示一张微信 ...

  7. ubuntu 20.04 安装 vim8.2

    由于ubuntu 20.04自带的vim版本比较老了,有些新装的插件适配不上,所以需要安装最新版本的vim.在网上找了很久也没有比较官方的安装教程所以记录一下. 安装依赖库 sudo apt inst ...

  8. 关于 Flink 状态与容错机制

    Flink 作为新一代基于事件流的.真正意义上的流批一体的大数据处理引擎,正在逐渐得到广大开发者们的青睐.就从我自身的视角看,最近也是在数据团队把一些原本由 Flume.SparkStreaming. ...

  9. JetBrains系列IDE创建文件模板

    #coding:utf-8 ''' @version: python3.6 @author: '$USER' @license: Apache Licence @contact: steinven@q ...

  10. Java开发学习(十三)----基于注解开发定义第三方bean及注解开发总结

    在前面的博客中定义bean的时候都是在自己开发的类上面写个注解就完成了,但如果是第三方的类,这些类都是在jar包中,我们没有办法在类上面添加注解,这个时候该怎么办? 遇到上述问题,我们就需要有一种更加 ...