[Noi2010]能量采集

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,

栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列

有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,

表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了

一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器

连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于

连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植

物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20

棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能

量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

5 4

【样例输入2】

3 4

Sample Output

【样例输出1】

36

【样例输出2】

20

对于100%的数据:1 ≤ n, m ≤ 100,000。

题解

莫比乌斯反演

老套路,先设n<m

我们注意到每个格子的贡献其实就是2 * gcd(x,y) - 1,所以我们要求的是

其中最难蒜的就是中间那一坨

我们设

我们先求一个更简单的,

那么根据莫比乌斯反演公式,

然后把f(k)代入前面的那一坨式子里

因为dk <= n,所以我们不妨就设T=dk ,枚举 T,然后枚举 T 的因数 k

仔细一看,后面的

大有文章。

这不就是莫比乌斯反演的后半段吗?我们解一解,设

,那么不就有这个关系

反演过来,刚好是

所以最终的答案就是

用欧拉筛做一遍,然后枚举van事。

CODE

之前欧拉筛里写了μ,懒得删了

#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 100005
#define LL long long
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
LL zxy;
LL n,m,i,j,k,s,o;
int p[MAXN],cnt;
int mu[MAXN];
LL phi[MAXN];
bool f[MAXN];
inline void sieve(int n) {
mu[1] = 1;
phi[1] = 1;
for(rg int i = 2;i <= n;i ++) {
if(!f[i]) {
p[++ cnt] = i;
mu[i] = -1;
phi[i] = i-1;
}
for(rg int j = 1;j <= cnt && i * p[j] <= n;j ++) {
f[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0;
phi[i * p[j]] = p[j] * phi[i];
break;
}
else mu[i * p[j]] = -mu[i],phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
return ;
}
signed main() {
sieve(100000);
n = read();m = read();
if(n > m) swap(n,m);
LL ans = 0;
for(int i = 1;i <= n;i ++) {
ans += (n/i) *1ll* (m/i) * phi[i];
}
printf("%lld\n",2ll * ans - n * 1ll * m);
return 0;
}

[Noi2010]能量采集 (莫比乌斯反演)的更多相关文章

  1. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  2. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  3. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  4. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  5. bzoj 2005 能量采集 莫比乌斯反演

    我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1) 化简得2×∑ni=1∑mj=1gcd(i,j)−n×m 所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可 ∑ni=1∑mj= ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. [NOI2010]能量采集(莫比乌斯反演)

    题面: bzoj luogu NOI2010能量采集 题解 读完题之后我们发现在每个产生贡献的点\((x1,y1)\)中,它与原点之间的点\((x2,y2)\)都满足\(x2|x1\),\(y2|y1 ...

  8. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  9. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

随机推荐

  1. 【python】tile函数简单介绍

    转:https://blog.csdn.net/april_newnew/article/details/44176059格式:tile(A,reps)* A:array_like* 输入的array ...

  2. net core天马行空系列-可用于依赖注入的,数据库表和c#实体类互相转换的接口实现

    1.前言 hi,大家好,我是三合.作为一名程序猿,日常开发中,我们在接到需求以后,一般都会先构思一个模型,然后根据模型写实体类,写完实体类后在数据库里建表,接着进行增删改查, 也有第二种情况,就是有些 ...

  3. php7.1 安装amqp扩展

    在php开发中使用rabbitmq消息队列时,需要安装PHP扩展amqp,安装步骤如下: 直接使用pecl进行amqp扩展的安装, /usr/local/php/bin/pecl install am ...

  4. 【黑马pink老师的H5/CSS课程】(二)标签与语法

    视频链接:P8~P29 黑马程序员pink老师前端入门教程,零基础必看的h5(html5)+css3+移动 参考链接: HTML 元素 1.HTML语法规范 1.1 基本语法概述 HTML 标签是由尖 ...

  5. 手写一个虚拟DOM库,彻底让你理解diff算法

    所谓虚拟DOM就是用js对象来描述真实DOM,它相对于原生DOM更加轻量,因为真正的DOM对象附带有非常多的属性,另外配合虚拟DOM的diff算法,能以最少的操作来更新DOM,除此之外,也能让Vue和 ...

  6. windows下docker部署报错

    报错信息:Error response from daemon: Ports are not available: exposing port TCP 0.0.0.0:8848 -> 0.0.0 ...

  7. 写出个灵活的系统竟然可以如此简单!小白也能写出高级的Java业务!

    一 最近正好公司里有个需求,一个短信业务接了多个第三方供应商,某些业务需要查询第三方供应商剩余的短信包数量去选择剩余量最多的渠道去批量发送.有些业务是指定了某个短信供应商,有些场景需要根据业务的值去动 ...

  8. java 九九乘法表(for循环)

    package study5ran2yl.study; public class ForDemo01 { public static void main(String[] args) { int h; ...

  9. DENIED Redis is running in protected mode because protected mode is enabled

    DENIED Redis is running in protected mode because protected mode is enabled redisson连接错误 Unable to i ...

  10. Solution -「Luogu 4135」作诗

    写在前面 & 前置芝士   好像是好久没有打理 blog 了.感觉上学期是有点颓.嘶,初三了好好冲一次吧.   那么回到这道题目.你会分块就能看懂. 题目大意   先挂个来自洛谷的 link. ...