ABC203F - Weed

题意转述

S

t

e

v

e

\rm Steve

Steve 和

A

l

e

x

\rm Alex

Alex 正在下界(

N

e

t

h

e

r

l

e

n

d

\rm Netherlend

Netherlend)玩音符盒(

N

o

t

e

b

l

o

c

k

\rm Note~block

Note block)。

S

t

e

v

e

\rm Steve

Steve 和

A

l

e

x

\rm Alex

Alex 按下了按钮,听着各色音符被发光的红石线激活,感到无比欢乐。但是他们发现有的音符盒发不出声音,原因是被垂泪藤占据了上方的空气方块。于是

S

t

e

v

e

\rm Steve

Steve 和

A

l

e

x

\rm Alex

Alex 打算清除这些垂泪藤。他们是这样清除的:

  • (为了有效地清除垂泪藤,他们打算到垂泪藤上方,挖掉它们上面的方块,除根)
  • S

    t

    e

    v

    e

    \rm Steve

    Steve 先记下了其中至多

    K

    K

    K 条垂泪藤,上去挖掉了它们上面的方块,清除它们。

  • A

    l

    e

    x

    \rm Alex

    Alex 重复进行这样的操作,直到所有垂泪藤被清除完: 找到长度最大的一条未除掉的垂泪藤的长度

    H

    H

    H ,告诉

    S

    t

    e

    v

    e

    \rm Steve

    Steve 所有未除掉的长度大于

    H

    2

    \frac{H}{2}

    2H​ 的垂泪藤的位置,然后让他除掉它们。

S

t

e

v

e

\rm Steve

Steve 想让

A

l

e

x

\rm Alex

Alex 进行的操作次数最少,在这个前提下,自己一开始记忆的垂泪藤数(

K

\leq K

≤K)尽可能少。但是一共有

N

(

2

1

0

5

)

N(\leq2\cdot10^5)

N(≤2⋅105) 条长度

h

i

1

0

9

h_i\leq10^9

hi​≤109 的垂泪藤(有个强大的模组消除了高度限制),于是

S

t

e

v

e

\rm Steve

Steve 想先向你询问,满足他的要求的情况下,

A

l

e

x

\rm Alex

Alex 进行的操作数和自己一开始记忆的垂泪藤数分别是多少。

题解

由于每次操作过后,最长的垂泪藤长度都至少会减半,因此,总操作数一定不会超过

log

H

m

a

x

+

1

=

31

\log H_{max}+1=31

logHmax​+1=31,那么我们就可以用一个简单的

D

y

n

a

m

i

c

P

r

o

g

r

a

m

m

i

n

g

\rm Dynamic~Programming

Dynamic Programming 来解决这道题:

先把所有的垂泪藤按长度从小到大排序,令

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示以第

j

j

j 条垂泪藤为最长开始,进行了

i

i

i 次操作后,清除的最大可能条数(

d

p

[

0

]

[

0

]

=

0

dp[0][0]=0

dp[0][0]=0)。有如下转移:

d

p

[

i

]

[

j

]

=

max

2

h

k

h

j

d

p

[

i

1

]

[

k

]

+

2

h

k

>

h

j

,

k

j

1

dp[i][j]=\max_{2h_k\leq h_j} dp[i-1][k]+\sum_{2h_k>h_j,k\leq j}1

dp[i][j]=2hk​≤hj​max​dp[i−1][k]+2hk​>hj​,k≤j∑​1

这个可以通过预处理以及前缀和优化等方式达到

O

(

1

)

O(1)

O(1) 转移,也当然可以用滚动少掉一维。

如果找到了最小的

i

i

i ,使得

d

p

[

i

]

m

a

x

N

K

dp[i]_{max}\geq N-K

dp[i]max​≥N−K,那么就可以输出

i

i

i 和

N

d

p

[

i

]

m

a

x

N-dp[i]_{max}

N−dp[i]max​ 了。

开头可以加个

k

=

n

k=n

k=n 的特判。

CODE

#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define DB double
#define LL long long
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
#define INF 0x3f3f3f3f
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
int a[MAXN];
int dp[2][MAXN];
int main() {
n = read();k = read();
for(int i = 1;i <= n;i ++) {
a[i] = read();
}
if(k == n) {printf("0 %d\n",n);return 0;}
sort(a + 1,a + 1 + n);
int ans = 0;
for(int i = 1;i <= 32;i ++) {
int ad = 0,mx = 0;
for(int j = 1;j <= n;j ++) {
while(ad < n && a[ad+1] <= a[j]/2) mx = max(mx,dp[i&1^1][++ ad]);
dp[i&1][j] = mx + (j-ad);
ans = max(dp[i&1][j],ans);
}
if(ans >= n-k) {printf("%d %d\n",i,n-ans);return 0;}
}
return 0;
}

ABC 203 F - Weed (DP)的更多相关文章

  1. Codeforces Round #471 (Div. 2) F. Heaps(dp)

    题意 给定一棵以 \(1\) 号点为根的树.若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆: 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\ ...

  2. 牛客国庆集训派对Day6 && CCPC-WannaFly-Camp #1 F. kingdom(DP)

    题目链接:https://www.nowcoder.com/acm/contest/206/F 题意:一棵 n 个点的树,根为 1,重儿子到父亲的费用为 0,其余为 1,问所有点到 1 的最大总费用是 ...

  3. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  4. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  5. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  6. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  7. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  8. Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)

    Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...

  9. Leetcode之动态规划(DP)专题-392. 判断子序列(Is Subsequence)

    Leetcode之动态规划(DP)专题-392. 判断子序列(Is Subsequence) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列. 你可以认为 s 和 t 中仅包含英文小写字母. ...

随机推荐

  1. GDOI 2021 普及组溺水记

    Day 1 T1 一看样例:答案不就是 \(\dfrac{\max_{i=1}^n a_i +1}{2}\) 吗? 于是自信打上,拍都不拍.然后就,,对了? 插曲:自己出了一个极端数据,发现 scan ...

  2. 互联网大厂目标管理OKR实践落地与反思

    上一篇「 互联网公司目标管理OKR和绩效考核的误区 」介绍了使用 OKR 时要澄清的一些概念,但是实际使用中又如何呢?我们快手也是很大的互联网公司,大家都是年轻人,思维活跃,容易接受新事物,敢尝试,但 ...

  3. 编程式导航路由跳转到当前路由(参数不变), 多次执行会抛出NavigationDuplicated的警告错误?

    注意:编程式导航(push|replace)才会有这种情况的异常,声明式导航是没有这种问题,因为声明式导航内部已经解决这种问题. 这种异常,对于程序没有任何影响的. 为什么会出现这种现象: 由于vue ...

  4. CVE-2021-3156漏洞复现

    CVE-2021-3156linux sudo 权限提升 版本ubantu18.04 使用这个命令可以是普通用户直接提升至管理员权限. 手动测试终端输入 sudoedit -s / 不知道什么原因ub ...

  5. numpy学习笔记02

    简介 numpy.array() 数组对象,可以表示普通的一维数组,或者二维矩阵,或者任意数据:并且它可以对数组中的数据进行非常高效的运算,如:数据统计.图像处理.线性代数等 numpy 之所以能运行 ...

  6. SAP 实例 13 Random Grouping with LOOP

    REPORT demo_loop_group_by_random. CLASS demo DEFINITION. PUBLIC SECTION. CLASS-METHODS: main, class_ ...

  7. webpack中文api

    1.      简介 1.Plugins://插件 webpack has a rich plugin interface.Most of the features are internal plug ...

  8. Windows 2008R2 IIS环境配置(靶机)

    一.Windows 2008 R2系统安装 VMware Workstation 15安装包 链接:https://pan.baidu.com/s/11sYcZTYPqIV-pyvzo7pWLQ 提取 ...

  9. rhel挂载本地光盘为yum源

    挂载光盘 mount /dev/sr0 /mnt/cdrom mkdir /mnt/cdrom 临时挂载 mount /dev/sr0 /mnt/cdrom 永久挂载光盘 mount -a 执行挂载 ...

  10. SpringCloud微服务实战——搭建企业级开发框架(四十三):多租户可配置的电子邮件发送系统设计与实现

      在日常生活中,邮件已经被聊天软件.短信等更便捷的信息传送方式代替.但在日常工作中,我们的重要的信息通知等非常有必要去归档追溯,那么邮件就是不可或缺的信息传送渠道.对于我们工作中经常用到的系统,里面 ...