题目链接

回路限制经典题。

每个点拆成入点和出点,源点连每个点的出点,流量1,费用0,每个点出点连汇点,流量1,费用0,入点和出点之间没有边。

也就是说每个点必须靠其他点流来的流量来流入汇点,同时自己的流量流出去,这时候就会形成环,只要把所有流量流满,就必定是题目要求的情形。

所以每个点向前后左右相邻点连边,如果本来就是这个方向,费用为0,否则费用为1,最小费用即为答案。

#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 1010;
const int MAXM = 200010;
queue <int> q;
int s, t, now, n, m;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, dis[MAXN], vis[MAXN], Flow[MAXN], pre[MAXN];
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){ from, head[from], to, flow, cost }; head[from] = num;
e[++num] = (Edge){ to, head[to], from, 0, -cost }; head[to] = num;
}
int RoadsExist(){
q.push(s);
memset(dis, 127, sizeof dis);
dis[s] = 0; Flow[s] = INF; pre[t] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i;
Flow[e[i].to] = min(Flow[now], e[i].rest);
if(!vis[e[i].to]){
vis[e[i].to] = 1;
q.push(e[i].to);
}
}
}
return pre[t];
}
int a[20][20], mincost, l[] = {233, -1, 1, 0, 0}, r[] = {666, 0, 0, -1, 1};
int id(int i, int j, int k){
return (i - 1) * m + j + k * 500;
}
char ch;
int main(){
scanf("%d%d", &n, &m); s = 999; t = 1000;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j){
ch = getchar(); while(ch == '\n' || ch == '\r' || ch == ' ') ch = getchar();
if(ch == 'U') a[i][j] = 1;
if(ch == 'D') a[i][j] = 2;
if(ch == 'L') a[i][j] = 3;
if(ch == 'R') a[i][j] = 4;
Add(s, id(i, j, 0), 1, 0);
Add(id(i, j, 1), t, 1, 0);
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
for(int k = 1; k <= 4; ++k){
int x = i + l[k], y = j + r[k];
if(!x) x = n; if(!y) y = m; if(x > n) x = 1; if(y > m) y = 1;
Add(id(i, j, 0), id(x, y, 1), 1, a[i][j] != k);
}
while(RoadsExist()){
mincost += Flow[t] * dis[t];
for(int i = t; i != s; i = e[pre[i]].from){
e[pre[i]].rest -= Flow[t];
e[pre[i] ^ 1].rest += Flow[t];
}
}
printf("%d\n", mincost);
return 0;
}

【洛谷 P3965】 [TJOI2013]循环格(费用流)的更多相关文章

  1. 洛谷 P3965 [TJOI2013]循环格 解题报告

    P3965 [TJOI2013]循环格 题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\).给定一个起始位\ ...

  2. Bzoj 3171: [Tjoi2013]循环格 费用流

    3171: [Tjoi2013]循环格 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 741  Solved: 463[Submit][Status][ ...

  3. [TJOI2013]循环格 费用流 BZOJ3171

    题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...

  4. 洛咕 P3965 [TJOI2013]循环格

    同tjoi2010 打扫房间,每个点入度,出度都为1,可以向相邻4个点连边,但只有原来存在的边费用为0. // luogu-judger-enable-o2 #include<bits/stdc ...

  5. BZOJ 3171 循环格(费用流)

    题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...

  6. 洛谷 1004 dp或最大费用流

    思路: dp方法: 设dp[i][j][k][l]为两条没有交叉的路径分别走到(i,j)和(k,l)处最大价值. 则转移方程为 dp[i][j][k][l]=max(dp[i-1][j][k-1][l ...

  7. 洛谷P4003 无限之环(费用流)

    传送门 神仙题啊……不看题解我可能一年都不一定做得出来……FlashHu大佬太强啦 到底是得有怎样的脑回路才能一眼看去就是费用流啊…… 建好图之后套个板子就好了,那么我们着重来讨论一下怎么建图 首先, ...

  8. 洛谷P4012 深海机器人问题(费用流)

    题目描述 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本.沿途生 ...

  9. 洛谷P2517 HAOI2010 订货 (费用流)

    标准的费用流问题,关键在于巧妙地建模 一共有n个月份,源点设为0,汇点设为n+1 1.源点向所有月份连边,容量为正无穷,费用为该月进货的费用 2.每个月向下一个月连边,容量为仓库容量,费用为存货费用 ...

  10. 洛谷P4016 负载平衡问题 费用流

    这道题还是很好的. 考察了选手对网络流的理解. 首先,任意两个相邻点之间的运货量时没有限制的. 我们可以将相邻点之间的流量建为无限大,单位费用设为 1,代表运输一个货物需耗费一个代价. 由于题目要求最 ...

随机推荐

  1. 【beta】Scrum站立会议第7次....11.9

    小组名称:nice! 组长:李权 成员:于淼  刘芳芳韩媛媛 宫丽君 项目内容:约跑app(约吧) 时间:2016.11.9    12:00——12:30 地点:传媒西楼220室 本次对beta阶段 ...

  2. oracle 查询优化及sql改写

    ORACLE有个高速缓冲的概念,这个高速缓冲就是存放执行过的SQL语句,那oracle在执行sql语句的时候要做很多工作,例如解析sql语句,估算索引利用率,绑定变量,读取数据块等等这些操作.假设高速 ...

  3. ping不通的常见原因和解决办法

    Ping是Windows.Unix和Linux系统下的一个命令.ping也属于一个通信协议,是TCP/IP协议的一部分.利用“ping”命令可以检查网络是否连通.如果ping不通则可以通过以下方式寻找 ...

  4. 【bzoj2656】[Zjoi2012]数列(sequence) 高精度

    题目描述 给出数列 $A$ 的递推公式如下图所示,$T$ 次给定 $n$ ,求 $A_n$ . 输入 输入文件第一行有且只有一个正整数T,表示测试数据的组数.第2-T+1行,每行一个非负整数N. 输出 ...

  5. 51nod 1526 分配笔名(字典树+贪心)

    题意: 班里有n个同学.老师为他们选了n个笔名.现在要把这些笔名分配给每一个同学,每一个同学分配到一个笔名,每一个笔名必须分配给某个同学.现在定义笔名和真名之间的相关度是他们之间的最长公共前缀.设笔名 ...

  6. 转:python的nltk中文使用和学习资料汇总帮你入门提高

    python的nltk中文使用和学习资料汇总帮你入门提高 转:http://blog.csdn.net/huyoo/article/details/12188573 nltk的安装 nltk初步使用入 ...

  7. 聊聊flink的CsvTableSource

    序 本文主要研究一下flink的CsvTableSource TableSource flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/tabl ...

  8. 【WebAPI】新手入门WebAPI

    一.前言       工作也有一年多了,从进入公司就一直进行BIM(建筑信息模型)C/S产品的研发,平时写的最多的就是Dev WPF.一个偶然的时机,产品需要做支付宝扫码与微信扫码,所以需要了解产品服 ...

  9. php安装gd库

    安装gd需要以下库: gd-2.0.33.tar.gz http://www.boutell.com/gd/ jpegsrc.v6b.tar.gz http://www.ijg.org/ libpng ...

  10. C++——内存对象 禁止产生堆对象 禁止产生栈对象

    用C或C++写程序,需要更多地关注内存,这不仅仅是因为内存的分配是否合理直接影响着程序的效率和性能,更为主要的是,当我们操作内存的时候一不小心就会出现问题,而且很多时候,这些问题都是不易发觉的,比如内 ...