Alyona and Triangles

题目连接:

http://acm.hust.edu.cn/vjudge/contest/121333#problem/J

Description

You are given n points with integer coordinates on the plane. Points are given in a way such that there is no triangle, formed by any three of these n points, which area exceeds S.

Alyona tried to construct a triangle with integer coordinates, which contains all n points and which area doesn't exceed 4S, but, by obvious reason, had no success in that. Please help Alyona construct such triangle. Please note that vertices of resulting triangle are not necessarily chosen from n given points.

Input

In the first line of the input two integers n and S (3 ≤ n ≤ 5000, 1 ≤ S ≤ 1018) are given — the number of points given and the upper bound value of any triangle's area, formed by any three of given n points.

The next n lines describes given points: ith of them consists of two integers xi and yi( - 108 ≤ xi, yi ≤ 108) — coordinates of ith point.

It is guaranteed that there is at least one triple of points not lying on the same line.

Output

Print the coordinates of three points — vertices of a triangle which contains all n points and which area doesn't exceed 4S.

Coordinates of every triangle's vertex should be printed on a separate line, every coordinate pair should be separated by a single space. Coordinates should be an integers not exceeding 109 by absolute value.

It is guaranteed that there is at least one desired triangle. If there is more than one answer, print any of them.

Sample Input

4 1

0 0

1 0

0 1

1 1

Sample Output

-1 0

2 0

0 2

题意:

给出n个点,任意三个点组成的三角形面积不超过S;

构造一个大三角形覆盖上述所有n个点,并且面积不超过4S;

题解:

先找出最大的三角形;

再根据性质往三边拓展三个相同的三角形,面积即不超过4S;

找最大三角形:不停遍历n个点加入三角形点集合,可以证明复杂度不超过O(n^2);

(图盗用自@qscqesze同学~)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define double LL
#define eps 1e-8
#define maxn 5100
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; struct Point{
double x,y;
Point(){}
Point(double tx,double ty) {x=tx;y=ty;}
}p[maxn];; double xmul(Point p0,Point p1,Point p2)
{return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);} double triangle_area(Point a,Point b,Point c) {
return abs(xmul(a,b,c));
} int main(void)
{
//IN; int n; LL S;
while(scanf("%d %I64d", &n,&S) != EOF)
{
for(int i=1; i<=n; i++)
scanf("%I64d %I64d", &p[i].x,&p[i].y); bool flag = 1;
int a=1, b=2, c=3;
double ans = triangle_area(p[a],p[b],p[c]);
while(flag) {
flag = 0;
for(int i=1; i<=n; i++) {
double tmp;
tmp = triangle_area(p[a],p[b],p[i]);
if(tmp > ans) {
ans = tmp; c = i; flag = 1;
}
tmp = triangle_area(p[a],p[i],p[c]);
if(tmp > ans) {
ans = tmp; b = i; flag = 1;
}
tmp = triangle_area(p[i],p[b],p[c]);
if(tmp > ans) {
ans = tmp; a = i; flag = 1;
}
}
} cout << p[a].x+p[b].x-p[c].x << ' ' << p[b].y+p[a].y-p[c].y << endl;
cout << p[a].x+p[c].x-p[b].x << ' ' << p[c].y+p[a].y-p[b].y << endl;
cout << p[c].x+p[b].x-p[a].x << ' ' << p[b].y+p[c].y-p[a].y << endl;
} return 0;
}

CodeForces 682E Alyona and Triangles (计算几何)的更多相关文章

  1. Codeforces Round #358 (Div. 2) E. Alyona and Triangles 随机化

    E. Alyona and Triangles 题目连接: http://codeforces.com/contest/682/problem/E Description You are given ...

  2. Codeforces E. Alyona and a tree(二分树上差分)

    题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)

    You are given n points with integer coordinates on the plane. Points are given in a way such that th ...

  4. Codeforces 740C. Alyona and mex 思路模拟

    C. Alyona and mex time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...

  5. Codeforces 740A. Alyona and copybooks 模拟

    A. Alyona and copybooks time limit per test: 1 second memory limit per test: 256 megabytes input: st ...

  6. Codeforces 777C Alyona and Spreadsheet

    C. Alyona and Spreadsheet time limit per test:1 second memory limit per test:256 megabytes input:sta ...

  7. cf682E Alyona and Triangles

    You are given n points with integer coordinates on the plane. Points are given in a way such that th ...

  8. Codeforces 1119E Pavel and Triangles (贪心)

    Codeforces Global Round 2 题目链接: E. Pavel and Triangles Pavel has several sticks with lengths equal t ...

  9. codeforces 682C Alyona and the Tree(DFS)

    题目链接:http://codeforces.com/problemset/problem/682/C 题意:如果点v在点u的子树上且dist(u,v)>a[v]则u和其整个子树都将被删去,求被 ...

随机推荐

  1. BZOJ 3132 上帝造题的七分钟(二维树状数组)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3132 题意:给出一个矩阵,两种操作:(1)将某个子矩阵的数字统一加上某个值:(2)查询某 ...

  2. python学习笔记之初识Python

    一直听说python语音的简单易用而又强大,今天终于忍不住借本书,开始接触接触一下它,下面结合书本和自己的一些体会,写一下刚刚接触python的东西,重点写一些和C++有区别的地方. (1)输入inp ...

  3. C++ STL之排序算法

    排序算法和查找算法差不多,也涉及到迭代器区间问题,关于该问题的注意事项就不在啰嗦了 一.全部排序sort.stable_sort sort是一种不稳定排序,使用时需要包含头文件algorithm 默认 ...

  4. 1320. Graph Decomposition

    1320 简单并查集 #include <iostream> #include<cstdio> #include<cstring> #include<algo ...

  5. REVOKE DBA权限要小心

      REVOKE DBA权限要小心 转载:http://blog.csdn.net/lwei_998/article/details/6133557 发现某些用户有DBA权限的时候,为了安全,一般我们 ...

  6. 【转】JAVA之网络编程

    转自:火之光 网络编程 网络编程对于很多的初学者来说,都是很向往的一种编程技能,但是很多的初学者却因为很长一段时间无法进入网络编程的大门而放弃了对于该部分技术的学习. 在 学习网络编程以前,很多初学者 ...

  7. HDU 4632 Palindrome subsequence (区间DP)

    题意 给定一个字符串,问有多少个回文子串(两个子串可以一样). 思路 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字符串中[i,j]位置中出现的回文子序 ...

  8. 【周期串】NYOJ-1121 周期串

    [题目链接:NYOJ-1121] 例如:abcabcabc 该字符串的长度为9,那么周期串的长度len只可能为{1,3,9},否则就不可能构成周期串. 接下来,就是要在各周期间进行比较.描述不清... ...

  9. Android WebView常见问题的解决方案总结----例如Web page not available

    之前android虚拟机一直都可以直接联网,今天写了一个WebView之后,突然报出了Web page not available的错误,但是查看虚拟机自带的浏览器,是可以上网的,所以检查还是代码的问 ...

  10. C# Code for Downloading Stock Symbols z

    http://www.jarloo.com/download-stock-symbols/ If your using C# you can easily get the XML data using ...