PCL—低层次视觉—点云分割(超体聚类)
1.超体聚类——一种来自图像的分割方法
超体(supervoxel)是一种集合,集合的元素是“体”。与体素滤波器中的体类似,其本质是一个个的小方块。与之前提到的所有分割手段不同,超体聚类的目的并不是分割出某种特定物体,其对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每个小块之间的关系。这种将更小单元合并的分割思路已经出现了有些年份了,在图像分割中,像素聚类形成超像素,以超像素关系来理解图像已经广为研究。本质上这种方法是对局部的一种总结,纹理,材质,颜色类似的部分会被自动的分割成一块,有利于后续识别工作。比如对人的识别,如果能将头发,面部,四肢,躯干分开,则能更好的对各种姿态,性别的人进行识别。
点云和图像不一样,其不存在像素邻接关系。所以,超体聚类之前,必须以八叉树对点云进行划分,获得不同点团之间的邻接关系。与图像相似点云的邻接关系也有很多,如面邻接,线邻接,点邻接。其具体解释如下图:

基于超体聚类的点云分割,使用点邻接(蓝色)作为相邻判据。
2.超体聚类的实现步骤
举个简单的例子来体会下超体聚类,其过程和结晶类似。但不是水结晶成冰,而是盐溶液过饱和状态下的多晶核结晶。所有的晶核(seed)同时开始生长,最终填满整个空间,使物质具有晶体结构。 超体聚类实际上是一种特殊的区域生长算法,和无限制的生长不同,超体聚类首先需要规律的布置区域生长“晶核”。晶核在空间中实际上是均匀分布的,并指定晶核距离(Rseed)。再指定粒子距离(Rvoxel)。再指定最小晶粒(MOV),过小的晶粒需要融入最近的大晶粒。关系如图所示:

有了晶粒和结晶范围之后,我们只需要控制结晶过程,就能将整个空间划分开了。结晶过程的本质就是不断吸纳类似的粒子(八分空间)。类似是一个比较模糊的概念,关于类似的定义有以下公式:

公式中的Dc,表示颜色上的差异,Dn表示法线上的差异,Ds代表点距离上的差异。w_*表示一系列权重。用于控制结晶形状。在晶核周围寻找一圈,D最小的体素被认为是下一个“被发展的党员”。需要注意的是,结晶过程并不是长完一个晶核再长下一个,二是所有的晶核同时开始生长(虽然计算机计算时必然有先后,但从层次上来说是同时的)。其生长顺序如下图所示:

接下来所有晶核继续公平竞争,发展第二个“党员”,以此循环,最终所有晶体应该几乎同时完成生长。整个点云也被晶格所分割开来。并且保证了一个晶包里的粒子都是类似的。
3.PCL对超体聚类的实现
//设定结晶参数
float voxel_resolution = 0.008f;
float seed_resolution = 0.1f;
float color_importance = 0.2f;
float spatial_importance = 0.4f;
float normal_importance = 1.0f; //生成结晶器
pcl::SupervoxelClustering<PointT> super (voxel_resolution, seed_resolution);
//和点云形式有关
if (disable_transform)
super.setUseSingleCameraTransform (false);
//输入点云及结晶参数
super.setInputCloud (cloud);
super.setColorImportance (color_importance);
super.setSpatialImportance (spatial_importance);
super.setNormalImportance (normal_importance);
//输出结晶分割结果:结果是一个映射表
std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > supervoxel_clusters;
super.extract (supervoxel_clusters);
//获得晶体中心
PointCloudT::Ptr voxel_centroid_cloud = super.getVoxelCentroidCloud ();
//获得晶体
PointLCloudT::Ptr labeled_voxel_cloud = super.getLabeledVoxelCloud ();
执行上诉过程后,会将晶体映射成一系列数。数代表的是指向各个晶体的指针。可以通过getter函数,把晶体有关的信息拖出来。拖出来的是点云。
//将相连的晶体中心连起来并显示
std::multimap<uint32_t, uint32_t> supervoxel_adjacency;
super.getSupervoxelAdjacency (supervoxel_adjacency);
std::multimap<uint32_t,uint32_t>::iterator label_itr = supervoxel_adjacency.begin ();
for ( ; label_itr != supervoxel_adjacency.end (); )
{
//First get the label
uint32_t supervoxel_label = label_itr->first;
//Now get the supervoxel corresponding to the label
pcl::Supervoxel<PointT>::Ptr supervoxel = supervoxel_clusters.at (supervoxel_label); //Now we need to iterate through the adjacent supervoxels and make a point cloud of them
PointCloudT adjacent_supervoxel_centers;
std::multimap<uint32_t,uint32_t>::iterator adjacent_itr = supervoxel_adjacency.equal_range (supervoxel_label).first;
for ( ; adjacent_itr!=supervoxel_adjacency.equal_range (supervoxel_label).second; ++adjacent_itr)
{
pcl::Supervoxel<PointT>::Ptr neighbor_supervoxel = supervoxel_clusters.at (adjacent_itr->second);
adjacent_supervoxel_centers.push_back (neighbor_supervoxel->centroid_);
}
//Now we make a name for this polygon
std::stringstream ss;
ss << "supervoxel_" << supervoxel_label;
//This function is shown below, but is beyond the scope of this tutorial - basically it just generates a "star" polygon mesh from the points given
addSupervoxelConnectionsToViewer (supervoxel->centroid_, adjacent_supervoxel_centers, ss.str (), viewer);
//Move iterator forward to next label
label_itr = supervoxel_adjacency.upper_bound (supervoxel_label);
}
至此,生成了不同的晶体之间的邻接关系。结果如下所示(不同晶核距离0.1m,0.05m)

此方法主要为识别做前期准备,但我认为,这种东西用在三维视觉+有限元倒是极好的。可以在不使用应变片的前提下对物体各个部分应变进行直接测量。在已知力的情况下可以建立物体刚度和应变的关系,貌似钢包回转台的手里分析可以这样解决。蛋疼的是实际工业机械哪有那么多花花绿绿的给你分割,很难形成有效的对应点匹配。
PCL—低层次视觉—点云分割(超体聚类)的更多相关文章
- PCL—低层次视觉—点云分割(基于凹凸性)
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...
- PCL—低层次视觉—点云分割(邻近信息)
分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标 ...
- PCL—低层次视觉—点云分割(RanSaC)
点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现.不过多插一句,自Niloy J Mitra教授的Global contrast based salient region ...
- PCL—低层次视觉—点云分割(基于形态学)
1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直是地球学,测量学的研究重点.但对于城市,森林,等独特地形来说,航空测量会受到影响.因为土地表面的树,地面上的 ...
- PCL—低层次视觉—点云分割(最小割算法)
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...
- PCL—低层次视觉—点云滤波(基于点云频率)
1.点云的频率 今天在阅读分割有关的文献时,惊喜的发现,点云和图像一样,有可能也存在频率的概念.但这个概念并未在文献中出现也未被使用,谨在本博文中滥用一下“高频”一词.点云表达的是三维空间中的一种信息 ...
- PCL—低层次视觉—点云滤波(初步处理)
点云滤波的概念 点云滤波是点云处理的基本步骤,也是进行 high level 三维图像处理之前必须要进行的预处理.其作用类似于信号处理中的滤波,但实现手段却和信号处理不一样.我认为原因有以下几个方面: ...
- PCL—低层次视觉—关键点检测(rangeImage)
关键点又称为感兴趣的点,是低层次视觉通往高层次视觉的捷径,抑或是高层次感知对低层次处理手段的妥协. ——三维视觉关键点检测 1.关键点,线,面 关键点=特征点: 关键线=边缘: 关键面=foregro ...
- PCL—低层次视觉—关键点检测(NARF)
关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有 ...
随机推荐
- WPF 控件DataGrid绑定
WPF 手动绑定 DataGrid 例子:前台:<DataGrid AutoGenerateColumns="False" Name="dataGrid1" ...
- matlab实现高斯消去法、LU分解
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...
- Notes of the scrum meeting(11/1)
meeting time:9:00~10:30p.m.,November 1st,2013 meeting place:20号公寓楼前 attendees: 顾育豪 ...
- c# 重载运算符(+-|&)和扩展方法
通常我们需要对class的相加,相减,相乘 等重载以适应需求, 如caml查询的时候,我们可以定义一个caml类,然后来操作这些查询. 首先,我们定义一个class为Test public class ...
- 不同的source control下配置DiffMerge
TFS: 1. 打开Option -> Source Control -> Visual Studio TFS -> Configure User Tools; 2. 添加 .*, ...
- hadoop 数据采样
http://www.cnblogs.com/xuxm2007/archive/2012/03/04/2379143.html 原文地址如上: 关于Hadoop中的采样器 .为什么要使用采样器 在这个 ...
- ios Camera学习笔记
检测设备的摄像头是否可用: - (BOOL) isCameraAvailable{ return [UIImagePickerController isSourceTypeAvailable: UII ...
- 【BZOJ】【2818】Gcd
欧拉函数/莫比乌斯函数 嗯……跟2190很像的一道题,在上道题的基础上我们很容易就想到先求出gcd(x,y)==1的组,然后再让x*=prime[i],y*=prime[i]这样它们的最大公约数就是p ...
- nenu contest3
http://vjudge.net/contest/view.action?cid=55702#overview 12656 - Almost Palindrome http://uva.online ...
- 使用了非标准扩展:“xxx”使用 SEH,并且“xxx”有析构函数
如果一个函数内使用了异常处理机制, VC 编译器在编译该函数时,它会给此函数插入一些“代码和信息”(代码指的是当该函数中出现异常时的回调函数,而信息主要是指与异常出现相关的一些必要的链表),因此每份函 ...